SUMMARY
Evolving from the endosymbiosis of a green algal cell by a filose amoeba or amoeboflagellate, the chimearic chlorarachniophytes combine unique features retained from both of their ancestral units. They have preserved from the endosymbiont only the nucleomorph and chloroplast. Four strains from three genera of this algal class were studied to identify a set of non‐phosphorous‐containing polar lipids and their associated fatty acids using the techniques of positive‐ion electrospray ionization/mass spectrometry (ESI/MS) and electrospray ionization/mass spectrometry/mass spectrometry (ESI/MS/MS). Fourteen non‐phosphorous‐containing polar lipids, classified as betaine lipids were primarily identified as forms of diacylglyceryl‐N,N,N‐trimethylhomoserine (DGTS) and its structural isomer diaclyglycerylhydroxymethyl‐N,N,N‐trimethyl‐β‐alanine (DGTA). Though the number of forms of DGTA and DGTA were roughly equal, DGTS composed more of the polar lipid portion present in three of the strains tested, while the fourth, Lotharella globosa, was dominated by forms of DGTA. In addition, a lipid tentatively identified as diacylglycerylcarboxyhydroxymethylcholine (DGCC) was observed twice in minor amounts. The polar lipid‐associated fatty acids of the aforementioned algal strains generally included dodecanoic acid (12:0), tetradecanoic acid (14:0), hexadecanoic acid (16:0), octadecanoic acid (18:0), octadecenoic acid (18:1), and eicosapentaenoic acid [20:5(n‐3)]. The differences in betaine lipid content among the species studied may allow for further conclusions to be drawn regarding the taxonomy of chlorarachniophytes.
Glaucocystophytes are freshwater algae that possess an almost-intact cyanobacterium, referred to as a cyanelle, as their photosynthetic organelle. Because the cyanelle represents an intermediate state in plastid evolution, glaucocystophytes have been the subject of several studies to characterize the genetics and biochemistry of their cyanelles. However, only a small handful of older studies exist on the composition of their lipids, particularly two major plastid lipids, mono-and digalactosyldiacylglycerol (MGDG and DGDG, respectively), found in all photosynthetic life. Our study has used a modern mass spectrometry approach, namely positive-ion electrospray ionization/mass spectrometry/mass spectrometry, to provide a fresh interpretation of the MGDG and DGDG composition of the species, Cyanophora paradoxa Korshikov and Glaucocystis nostochinearum Itzigsohn, representing two glaucocystophyte genera. We have found that the major forms of MGDG and DGDG (with sn-1/sn-2 regiochemistry) are 20:5/16:0 MGDG, 20:5/20:5 MGDG, 20:5/16:0 DGDG, and 20:5/20:5 DGDG. A comparison of these four forms, along with other more minor forms of MGDG and DGDG, to two examples of cyanobacteria has revealed that glaucocystophytes do not share intact forms of MGDG and DGDG with extant cyanobacteria, but may have maintained certain C16 and C18 cyanobacterial fatty acids.
Glaucocystophytes are a group of evolutionarily important freshwater algae that have an almost intact cyanobacterium, referred to as a cyanelle, as the photosynthetic organelle. Because of this, they have been the subject of a large number of studies over the past few decades on how a cyanobacterium transitioned into a chloroplast. However, studies on their lipid composition have lagged behind those on other areas of glaucocystophyte cell biology. To this end, we have examined the sterol composition of Cyanophora paradoxa Korshikov and Glaucocystis nostochinearum Itzigsohn in order to identify sterols left unidentified in previous studies. We have found that two isolates of G. nostochinearum and one of C. paradoxa uniformly produced three sterols: 24-methylcholest-5-en3b-ol, 24-ethylcholesta-5,22E-dien-3b-ol, and 24-ethylcholest-5-en-3b-ol.
Raphidophyte algae (Raphidophyceae) can be divided according to pigment composition and plastid ancestry into two categories, brown- and green-pigmented taxa. We sought to examine if there are any biochemical differences in plastid lipid composition between the two groups. To this end, the composition and positional distribution of fatty acids of the chloroplast lipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), were examined using positive-ion electrospray/mass spectrometry (ESI/MS) and electrospray/mass spectrometry/mass spectrometry (ESI/MS/MS). Brown-pigmented strains from the genera Chattonella, Fibrocapsa, and Heterosigma primarily consisted of 20:5/18:4 (sn-1/sn-2) MGDG and 20:5/18:4 DGDG, while isolates of the green-pigmented raphidophyte Gonyostomum semen (Ehrenb.) Diesing contained these as well as 18:3/18:4 MGDG and DGDG, thus underscoring its green algal plastid lineage. Although previously unseen without the regiochemical information provided by ESI/MS/MS, Chattonella subsalsa Biecheler possessed 20:5/18:3 DGDG as a major form, a potential biosynthetic intermediate in the production of 20:5/18:4 DGDG. These results provide a modern interpretation of the fatty acid regiochemistry of MGDG and DGDG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.