We present results of multiproxy analysis of a sediment core collected from Billy Slope Meadow, a spring-fed wet meadow in Range Creek Canyon, Utah. Range Creek Canyon was the home to Fremont maize farmers between roughly 1200 and 800 cal BP (AD 750–1150). Stable carbon isotope analysis of core sediments from Billy Slope Meadow indicate the Billy Slope Meadow site was used as a field for maize agriculture during that time. Some scholars have suggested the florescence of the Fremont culture may have been driven by increased summer precipitation, which improved the economic profitability of dry farming maize. But analysis of pollen, macroscopic charcoal and sediment geochemistry from Billy Slope Meadow, and a comparison with a local tree-ring chronology indicate the Fremont period in Range Creek Canyon was probably marked by reduced summer precipitation, and not an invigorated monsoon. The Fremont maize farmers of Range Creek Canyon therefore likely used winter snowpack-derived water from Range Creek for maize agriculture. This observation has significant implications, as using creek water rather than direct precipitation and runoff necessitates the construction of dams irrigation infrastructure, limited evidence for which has been reported by archaeologists working in the Fremont region.
A series of farming experiments was conducted between 2013 and 2017 in Range Creek Canyon, Utah, to better understand the opportunities and constraints faced by prehistoric farmers in the Southwest. The experiments were designed to collect data on the optimal amount of supplemental water that should be applied to maize fields given the costs in labor and benefits in greater yield. We investigate expected variation in water management strategies using an optimal irrigation model (OIM). The model makes clear that the payoff for farming is best understood as a continuum of relative success and that irrigation is one activity (probably of many) that may improve farming efficiency as well as increase harvest yields. The optimal harvest will always be less than the maximum harvest when there are significant operating costs associated with irrigation. Estimating the costs and benefits of irrigation in a specific area allows for an assessment of whether irrigation is expected, and if so, how much effort should be devoted to water management. A local dendroclimatological study is used to provide the prehistoric context for the Fremont who occupied Range Creek Canyon, and irrigation is expected even in periods of greater precipitation.
A wealth of information on the patterns of human subsistence and plant domestication has been generated from studies on maize (Zea mays) starch granules. However, very little work has been conducted on how the size and morphology of those granules might change as a function of water stress during the growing season. In the arid Southwest, the role of irrigation in growing maize is an essential parameter in many foraging models. Our study seeks to determine if there are significant changes in the size and other morphological attributes of starch granules from maize planted at Range Creek Canyon under two different irrigation regimes ranging from little water (once every three weeks) to ample water (once a day). Our results provide data on the effects of irrigation on Z. mays starch granules and, therefore, have implications for identifying archaeological maize and possibly determining past water regimes at Range Creek Canyon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.