Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the "top 10" biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γvalerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This catalyst showed 4 times higher activity and exceptional stability in comparison with traditional activated carbon supported ruthenium catalysts (Ru/C). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies suggest that the superior catalytic properties of Ru nanoparticles supported on FLG in LA hydrogenation could be attributed to the greater metallic Ru content present in the Ru/FLG in comparison to that in Ru/C. ABSTRACT: Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the "top 10" biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γ-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This catalyst showed 4 times higher activity and exceptional stability in comparison with traditional activated carbon supported ruthenium catalysts (Ru/C). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies suggest that the superior catalytic properties of Ru nanoparticles supported on FLG in LA hydrogenation could be attributed to the greater metallic Ru content present in the Ru/FLG in comparison to that in Ru/C. NotesThe authors declare no competing financial interest. ■ ACKNOWLEDGMENTSThis work was supported through funding from the Iowa Energy Center. We thank Iowa State University for startup funds. We also thank Gordon J. Miller for use of his XRD instrument and Igor I. Slowing for use of his ICP-AES instrument. The valuable discussion with Young-Jin Lee and Aaron J. Rossini is greatly appreciated.
Secondary piperidines are ideal pharmaceutical building blocks owing to the prevalence of piperidines in commercial drugs. Here, we report an electrochemical method for cyanation of the heterocycle adjacent to nitrogen without requiring protection or substitution of the N-H bond. The reaction utilizes ABNO (9-azabicyclononane N-oxyl) as a catalytic mediator. Electrochemical oxidation of ABNO generates the corresponding oxoammonium species, which promotes dehydrogenation of the 2° piperidine to the cyclic imine, followed by addition of cyanide. The low-potential, mediated electrolysis process is compatible with a wide range of heterocyclic and oxidatively sensitive substituents on the piperidine ring and enables synthesis of unnatural amino acids.
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures.
The high recalcitrance of plant cell walls is an obstacle for effective chemical or biological conversion into renewable chemicals and transportation fuels. Here, we investigated the utilization of both oxygen (O2) and hydrogen peroxide (H2O2) as co-oxidants during alkaline–oxidative pretreatment to improve biomass fractionation and increase enzymatic digestibility. The oxidative pretreatment of hybrid poplar was studied over a variety of conditions. Employing O2 in addition to H2O2 as a co-oxidant during the two-stage alkaline pre-extraction/copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in a substantial improvement in delignification relative to using H2O2 alone during the second-stage Cu-AHP pretreatment, leading to high overall sugar yields even at H2O2 loadings as low as 2% (w/w of the original biomass). The presence of H2O2, however, was both critical and synergistic. Performing analogous reactions in the absence of H2O2 resulted in approximately 25% less delignification and 30% decrease in sugar yields. The lignin isolated from this dual oxidant second stage had high aliphatic hydroxyl group content and reactivity to isocyanate, indicating that it is a promising substrate for the production of polyurethanes. To test the suitability of the isolated lignin as a source of aromatic monomers, the lignin was subjected to a sequential Bobbitt’s salt oxidation followed by a formic acid-catalyzed depolymerization process. Monomer yields of approximately 17% (w/w) were obtained, and the difference in yields was not significant between lignin isolated from our Cu-AHP process with and without O2 as a co-oxidant. Thus, the addition of O2 did not lead to significant lignin crosslinking, a result consistent with the two-dimensional heteronuclear single-quantum coherence NMR spectra of the isolated lignin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.