An exposure simulation study was conducted to characterize potential formaldehyde exposures of salon workers and clients during keratin hair smoothing treatments. Four different hair treatment brands (Brazilian Blowout, Coppola, Global Keratin, and La Brasiliana) were applied to separate human hair wigs mounted on mannequin heads. Short-term (6-16 min) and long-term (41-371 min) personal and area samples (at distances of 0.5 to 3.0 m from the source) were collected during each treatment for the 1-day simulation. A total of 88 personal, area, and clearance samples were collected. Results were analyzed based on task sampling (blow-dry, flat-iron), treatment sampling (per hair product), and time-weighted averages (per hair treatment, four consecutive treatments). Real-time monitoring of tracer gas levels, for determining the air exchange rate, and formaldehyde levels were logged throughout the simulation. Bulk samples of each hair treatment were collected to identify and quantify formaldehyde and other chemical components that may degrade to formaldehyde under excessive heat. Mean airborne concentrations of formaldehyde ranged from 0.08-3.47 ppm during blow-dry and 0.08-1.05 ppm during flat-iron. During each treatment, the mean airborne concentrations ranged from 0.02-1.19 ppm throughout different zones of the salon. Estimated 8-hr time-weighted averages for one treatment per day ranged from 0.02 ppm for La Brasiliana to 0.08-0.16 ppm for Brazilian Blowout. For four treatments per day, means ranged from 0.04-0.05 ppm for La Brasiliana to 0.44-0.75 ppm for Brazilian Blowout. Using all four products in one day resulted in estimated 8-hr time-weighted averages ranging from 0.17-0.29 ppm. Results from bulk sampling reported formaldehyde concentrations of 11.5% in Brazilian Blowout, 8.3% in Global Keratin, 3% in Coppola, and 0% in La Brasiliana. Other products that degrade into formaldehyde were detected in Global Keratin, Coppola, and La Brasiliana. The results of this study show that professional hair smoothing treatments--even those labeled "formaldehyde-free"--have the potential to produce formaldehyde concentrations that meet or exceed current occupational exposure limits.
Excessive exposures to airborne crystalline silica have been known for over 100 years to pose a serious health hazard. Work practices and regulatory standards advanced as the knowledge of the hazards of crystalline silica evolved. This article presents a comprehensive historical examination of the literature on exposure, health effects, and personal protective equipment related to silica and abrasive blasting operations over the last century. In the early 1900s, increased death rates and prevalence of pulmonary disease were observed in industries that involved dusty operations. Studies of these occupational cohorts served as the basis for the first occupational exposure limits in the 1930s. Early exposure studies in foundries revealed that abrasive blasting operations were particularly hazardous and provided the basis for many of the engineering control and respiratory protection requirements that are still in place today. Studies involving abrasive blasters over the years revealed that engineering controls were often not completely effective at reducing airborne silica concentrations to a safe level; consequently, respiratory protection has always been an important component of protecting workers. During the last 15-20 yr, quantitative exposure-response modeling, experimental animal studies, and in vitro methods were used to better understand the relationship between exposure to silica and disease in the workplace. In light of Occupational Safety and Health Administration efforts to reexamine the protectiveness of the current permissible exposure limit (PEL) for crystalline silica and its focus on protecting workers who are known to still be exposed to silica in the workplace (including abrasive blasters), this state-of-the-science review of one of the most hazardous operations involving crystalline silica should provide useful background to employers, researchers, and regulators interested in the historical evolution of the recognized occupational health hazards of crystalline silica and abrasive blasting operations and the related requirements for respiratory protection.
Cobalt (Co) is an essential component of vitamin B(12). As with all metals, at sufficiently high doses, Co may exert detrimental effects on different organ systems, and adverse responses have been observed in animals, patients undergoing Co therapy, and workers exposed to respirable Co particulates. Although blood Co concentrations are postulated to be the most accurate indicator of ongoing Co exposure, little is known regarding the dose-response relationships between blood Co concentrations and adverse health effects in various organ systems. In this analysis, the animal toxicology and epidemiology literature were evaluated to identify blood Co concentrations at which effects have, and have not, been reported. Where necessary, a biokinetic model was used to convert oral doses to blood Co concentrations. Our results indicated that blood Co concentrations of 300 μg/L and less have not been associated with adverse responses of any type in humans. Concentrations of 300 μg/L and higher were associated with certain hematological and reversible endocrine responses, including polycythemia and reduced iodide uptake. Blood Co concentrations of 700-800 μg Co/L and higher may pose a risk of more serious neurological, reproductive, or cardiac effects. These blood concentrations should be useful to clinicians and toxicologists who are attempting to interpret blood Co concentrations in exposed individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.