The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as “masking”. The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1 h pulse of light presented 2 h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Our results demonstrate that although centers with higher mortality and DCGL have more frequent major complications, they exhibit 3-fold the rate of FTR. Efforts to standardize perioperative care, and thus minimize FTR, will have value to pediatric liver transplantation recipients. This preliminary study indicates that FTR may provide a useful quality improvement tool for the field of transplantation and warrants further investigation.
IMPORTANCEThe clinical significance of gangrenous, suppurative, or exudative (GSE) findings is poorly characterized in children with nonperforated appendicitis. OBJECTIVE To evaluate whether GSE findings in children with nonperforated appendicitis are associated with increased risk of surgical site infections and resource utilization. DESIGN, SETTING, AND PARTICIPANTSThis multicenter cohort study used data from the Appendectomy Targeted Database of the American College of Surgeons Pediatric National Surgical Quality Improvement Program, which were augmented with operative report data obtained by supplemental medical record review. Data were obtained from 15 hospitals participating in the Eastern Pediatric Surgery Network (EPSN) research consortium. The study cohort comprised children (aged Յ18 years) with nonperforated appendicitis who underwent appendectomy from July 1, 2015, to June 30, 2020.EXPOSURES The presence of GSE findings was established through standardized, keyword-based audits of operative reports by EPSN surgeons. Interrater agreement for the presence or absence of GSE findings was evaluated in a random sample of 900 operative reports. MAIN OUTCOMES AND MEASURESThe primary outcome was 30-day postoperative surgical site infections (incisional and organ space infections). Secondary outcomes included rates of hospital revisits, postoperative abdominal imaging, and postoperative length of stay. Multivariable mixed-effects regression was used to adjust measures of association for patient characteristics and clustering within hospitals. RESULTS Among 6133 children with nonperforated appendicitis, 867 (14.1%) had GSE findings identified from operative report review (hospital range, 4.2%-30.2%; P < .001). Reviewers agreed on presence or absence of GSE findings in 93.3% of cases (weighted κ, 0.89; 95% CI, 0.86-0.92). In multivariable analysis, GSE findings were associated with increased odds of any surgical site infection (4.3% vs 2.2%; odds ratio [OR], 1.91; 95% CI, 1.35-2.71; P < .001), organ space infection (2.8% vs 1.1%; OR, 2.18; 95% CI, 1.30-3.67; P = .003), postoperative imaging (5.8% vs 3.7%; OR, 1.70; 95% CI, 1.23-2.36; P = .002), and prolonged mean postoperative length of stay (1.6 vs 0.9 days; rate ratio, 1.43; 95% CI, 1.32-1.54; P < .001). CONCLUSIONS AND RELEVANCEIn children with nonperforated appendicitis, findings of gangrene, suppuration, or exudate are associated with increased surgical site infections and resource utilization. Further investigation is needed to establish the role and duration of postoperative antibiotics and inpatient management to optimize outcomes in this cohort of children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.