Seismicity in the Eagle Ford play grew to 33 times the background rate in 2018. We identified how hydraulic fracturing (HF) contributed to seismicity since 2014 by comparing times and locations of HF with a catalog of seismicity extended with template matching. We found 94 ML ≥ 2.0 earthquakes spatiotemporally correlated to 211 HF well laterals. Injected volume and number of laterals on a pad influence the probability of seismicity, but effective injection rate has the strongest effect. Simultaneous stimulation of multiple laterals tripled the probability of seismicity relative to a single, isolated lateral. The 1 May 2018 MW 4.0 earthquake may have been the largest HF‐induced earthquake in the United States. It occurred ~10 km from a MW 4.8 earthquake in 2011 and was thought to be induced by fluid extraction. Thus, faults in this area are capable of producing felt and potentially damaging earthquakes due to operational activities.
We examine the along-strike transition from flat to steeper subduction in Oaxaca, Mexico, to provide a better understanding of what controls the slab morphology. Prior studies have suggested the slab tends to tear along the transitions in dip as the slab rolls back. We determine the slab geometry based on local seismicity, nonvolcanic tremor (NVT), and slow slip utilizing a deployment of broadband seismometers and continuous GPS receivers distributed in and around Oaxaca. We construct depth contours of the subducting slab surface down to 100 km, which illustrate that the transition from flat to steeper subduction occurs rapidly via a sharper flexure than previously recognized. The prior catalog of NVT in Oaxaca is extended using the same method and additional stations that extend further west. The band of NVT follows the new slab contours, widening toward the west with the downdip extent gradually moving inland. The amount of NVT also correlates with the strength of an ultraslow-velocity layer. There are no gaps in seismicity, NVT, or slow slip across the rapid transition in slab dip, further supporting the notion that the slab is not currently torn in the updip region. We propose that the sharp flexure is possible in this region due to bending moment saturation that leads to greater curvature in both the downdip and along-strike directions. A similar set of observations in southern Peru suggests this is a viable alternative to tearing that accommodates the large strains from variable rates of slab rollback.FASOLA ET AL.
The Mexican subduction zone is an ideal location for studying subduction processes due to the short trench-to-coast distances that bring broad portions of the seismogenic and transition zones of the plate interface inland. Using a recently generated seismicity catalog from a local network in Oaxaca, we identified 20 swarms of earthquakes (M < 5) from 2006 to 2012. Swarms outline what appears to be a steeply dipping structure in the overriding plate, indicative of an origin other than the plate interface. This steeply dipping structure corresponds to the northern boundary of the Xolapa terrane. In addition, we observed an interesting characteristic of slow slip events (SSEs) where they showed a shift from trenchward motion toward an along-strike direction at coastal GPS sites. A majority of the swarms were found to correspond in time to the along-strike shift. We propose that swarms and SSEs are occurring on a sliver fault that allows the oblique convergence to be partitioned into trench-perpendicular motion on the subduction interface and trench-parallel motion on the sliver fault. The resistivity structure surrounding the sliver fault suggests that SSEs and swarms of earthquakes occur due to high fluid content in the fault zone. We propose that the sliver fault provides a natural pathway for buoyant fluids attempting to migrate upward after being released from the downgoing plate. Thus, sliver faults could be responsible for the downdip end of the seismogenic zone by creating drier conditions on the subduction interface trenchward of the sliver fault, promoting fast-slip seismogenic rupture behavior.
The Mexican Subduction Zone is an ideal location for studying subduction processes due to the short trench-to-coast distances that bring broad portions of the seismogenic and transition zones of the plate interface inland. Using a recently generated seismicity catalog from a local network in Oaxaca, we identified 20 swarms of earthquakes (M<5) from 2006-2012. Swarms outline what appears to be a steeply dipping structure in the overriding plate, indicative of an origin other than the plate interface. This steeply dipping structure corresponds to the northern boundary of the Xolapa terrane. In addition, we observed a new characteristic of slow slip events (SSEs) where they showed a shift from trenchward motion towards an along-strike direction at coastal GPS sites. A majority of the swarms were found to correspond in time to the along-strike shift. We propose that swarms and SSEs are occurring on a sliver fault that allows the oblique convergence to be partitioned into trench perpendicular motion on the subduction interface and trench parallel motion on the sliver fault . The resistivity structure surrounding the sliver fault suggests that SSEs and swarms of earthquakes occur due to high fluid content in the fault zone. We propose that the sliver fault provides a natural pathway for buoyant fluids attempting to migrate upward after being released from the downgoing plate. Thus, sliver faults could be responsible for the downdip end of the seismogenic zone by creating drier conditions on the subduction interface trenchward of the sliver fault, promoting fast-slip seismogenic rupture behavior. Significance StatementWe provide a new interpretation for the interaction of crustal faults, clusters of earthquakes (swarms), and slow slip (a slower form of fault rupture) in southern Mexico. Our observations indicate that swarms and slow slip are occurring on a sliver fault in the overriding plate that allows the oblique plate convergence to be separated into a trench perpendicular and parallel motion on the subduction interface and sliver fault, respectively. We propose the sliver fault provides a natural pathway for buoyant fluids attempting to migrate upward after being released from the downgoing plate. Thus, sliver faults could be responsible for the downdip end of the seismogenic zone by creating drier conditions on the subduction interface trenchward of the sliver fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.