In recent years, rising gold prices have exacerbated the global proliferation of artisanal-scale gold mining (ASGM), with catastrophic consequences for human and ecological health. Much of this burgeoning industry has occurred in biodiversity hot spots, notably in the tropical forests of South America. While the loss of tropical forests and floodplains as a result of ASGM has been well characterized, ASGM impacts on riverine hydrological properties are less understood. Previous fieldwork on ASGM-affected and gully-eroded tropical streams and rivers has demonstrated that increases in suspended-sediment concentration (SSC) can substantially impact fish diversity and aquatic community structure, yet our understanding of the timing and scope of impacts of such increases is limited by the lack of long-term records of SSC. To address this challenge, we present a 34-y analysis of the direct effect of ASGM on 32 river reaches in the Madre de Dios region of Peru, which has been heavily impacted by ASGM since the 1980s. We evaluate spatial and temporal patterns of impacts using estimated SSC derived from Landsat satellite imagery. We find that 16 of 18 stretches of river impacted by ASGM show significant increasing trends in SSC (P < 0.05), while only 5 of 14 unaffected sites do so. Additionally, ASGM appears to reverse natural seasonal cycles of SSC, which may imperil aquatic species. Overall, our findings indicate that ASGM is fundamentally altering optical water quality dynamics of a critical tropical biodiversity hot spot and provide guidance for future regulation of these activities.
Complex hydroclimate in the United States and Canada has limited identification of possible ongoing changes in streamflow. We address this challenge by classifying 541 stations in the United States and Canada into 15 “hydro-regions,” each with similar seasonal streamflow characteristics. Analysis of seasonal streamflow records at these stations from 1910 to present indicates regionally coherent changes in the frequency of extreme high- and low-flow events. Where changes are significant, these events have, on average, doubled in frequency relative to 1950 to 1969. In hydro-regions influenced by snowmelt runoff, extreme high-flow event frequency has increased despite snowpack depletion by warming winter temperatures. In drought-prone hydro-regions of the western United States and Southeast, extreme low-flow event frequency has increased, particularly during summer and fall. The magnitude and regional consistency of these hydrologic changes warrant attention by watershed stakeholders. The hydro-region framework facilitates quantification and further analyses of these changes to extreme streamflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.