Bone strength is influenced by mineral density and macro- and microstructure. Research into factors that contribute to bone morphology and strength has focused on genetic, environmental and morphological factors (e.g., body mass index), but little is known regarding the impact of rates of skeletal elongation on adult skeletal morphology and strength. Using micro-CT, we examined the impact of rates of skeletal elongation on bone cortical and trabecular morphology, and on rates of estrogen-dependent bone loss in the tibia in CD-1 mice, and in mice with accelerated skeletal growth (Longshanks). Groups of adult mice (n = 7/group) were subjected to ovariectomy or sham surgeries, scanned for 6 weeks, and indices of bone morphology were collected. Results show that Longshanks mice had significantly less trabecular bone at skeletal maturity, characterized by fewer, thinner trabeculae, and furthermore lost trabecular bone more slowly in response to ovariectomy. Artificial selection for rapid skeletal growth relative to somatic growth thus had a significant impact on trabecular bone morphology in Longshanks. Our data do not unequivocally demonstrate a causal relationship between rapid bone growth and reduced trabecular bone quality, but suggest that rapid linear bone growth may influence the risk of cancellous bone fragility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.