Parvoviruses (family Parvoviridae) are small DNA viruses that cause numerous diseases of medical, veterinary, and agricultural significance and have important applications in gene and anticancer therapy. DNA sequences derived from ancient parvoviruses are common in animal genomes and analysis of these endogenous parvoviral elements (EPVs) has demonstrated that the family, which includes twelve vertebrate-specific genera, arose in the distant evolutionary past. So far, however, such “paleovirological” analysis has only provided glimpses into the biology of ancient parvoviruses and their long-term evolutionary interactions with hosts. Here, we comprehensively map EPV diversity in 752 published vertebrate genomes, revealing defining aspects of ecology and evolution within individual parvovirus genera. We identify 364 distinct EPV sequences and show these represent approximately 200 unique germline incorporation events, involving at least five distinct parvovirus genera, which took place at points throughout the Cenozoic Era. We use the spatiotemporal and host range calibrations provided by these sequences to infer defining aspects of long-term evolution within individual parvovirus genera, including mammalian vicariance for genus Protoparvovirus, and interclass transmission for genus Dependoparvovirus. Moreover, our findings support a model of virus evolution in which the long-term cocirculation of multiple parvovirus genera in vertebrates reflects the adaptation of each viral genus to fill a distinct ecological niche. Our findings show that efforts to develop parvoviruses as therapeutic tools can be approached from a rational foundation based on comparative evolutionary analysis. To support this, we published our data in the form of an open, extensible, and cross-platform database designed to facilitate the wider utilisation of evolution-related domain knowledge in parvovirus research.
Parvoviruses (family Parvoviridae) are small, non-enveloped DNA viruses that infect a broad range of animal species. Comparative studies, supported by experimental evidence, show that many vertebrate species contain sequences derived from ancient parvoviruses embedded in their genomes. These endogenous parvoviral elements (EPVs), which arose via recombination-based mechanisms in infected germline cells of ancestral organisms, constitute a form of molecular fossil record that can be used to investigate the origin and evolution of the parvovirus family. Here, we use comparative approaches to investigate 198 EPV loci, represented by 470 EPV sequences identified in a comprehensive in silico screen of 752 published vertebrate genomes. We investigated EPV loci by constructing an open resource that contains the data items required for comparative sequence analysis of parvoviruses and uses a relational database to represent the complex semantic relationships between them. We used this standardised framework to implement reproducible comparative phylogenetic analysis of combined EPV and virus data. Our analysis reveals that viruses closely related to contemporary parvoviruses have circulated among vertebrates since the Late Cretaceous epoch (100-66 million years ago). We present evidence that the subfamily Parvovirinae, which includes ten vertebrate-specific genera, has evolved in broad congruence with the emergence and diversification of major vertebrate groups. Furthermore, we infer defining aspects of evolution within individual parvovirus genera - mammalian vicariance for protoparvoviruses (genus Protoparvovirus), and inter-class transmission for dependoparvoviruses (genus Dependoparvovirus) - thereby establishing an ecological and evolutionary perspective through which to approach analysis of these virus groups. We also identify evidence of EPV expression at RNA level and show that EPV coding sequences have frequently been maintained during evolution, adding to a growing body of evidence that EPV loci have been co-opted or exapted by vertebrate species, and especially by mammals. Our findings offer fundamental insights into parvovirus evolution. In addition, we establish novel genomic resources that can advance the development of parvovirus-related research - including both therapeutics and disease prevention efforts - by enabling more efficient dissemination and utilisation of relevant, evolution-related domain knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.