a b s t r a c tThe role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4 cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally ''places" the objects within this ''neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. Summary: This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, ''A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and ''Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various c...
Understanding the mechanics of consciousness remains one of the most important challenges in modern cognitive science. One key step toward understanding consciousness is to associate unconscious physiological processes with subjective experiences of sensory, motor, and emotional contents. This article explores the role of various cellular membrane potential differences and how they give rise to the dynamic infrastructure of conscious experience. This article explains that consciousness is a body-wide, biological process not limited to individual organs because the mind and body are unified as one entity; therefore, no single location of consciousness can be pinpointed. Consciousness exists throughout the entire body, and unified consciousness is experienced and maintained through dynamic repolarization during inhalation and expiration. Extant knowledge is reviewed to provide insight into how differences in cellular membrane potential play a vital role in the triggering of neural and non-neural oscillations. The role of dynamic cellular membrane potentials in the activity of the central nervous system, peripheral nervous system, cardiorespiratory system, and various other tissues (such as muscles and sensory organs) in the physiology of consciousness is also explored. Inspiration and expiration are accompanied by oscillating membrane potentials throughout all cells and play a vital role in subconscious human perception of feelings and states of mind. In addition, the role of the brainstem, hypothalamus, and complete nervous system (central, peripheral, and autonomic) within the mind-body space combine to allow consciousness to emerge and to come alive. This concept departs from the notion that the brain is the only organ that gives rise to consciousness.
Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses "super-impose" on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the "the body's internal 3D default space". We provide examples from meditation experiences to help explain how the sense of 'self ' can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner 'self '. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment. allows us to experience an internal representation of the external environment. In the following sections we discuss the purpose of brain oscillations in consciousness, and further explain the formation of our previously proposed 3D default space theory, see [11]. Brain oscillations and the 3d default spaceWe consider brain oscillations dynamic because sensory and cortical information is organized around the thalamus which allows us to experience the external world. Alpha, gamma, retinogeniculo-cortical, and corticothalamic oscillations are essential in forming the 3D default space because they allow constant and continuous communication between the brain and the body-without them, we do not think that consciousness can emerge.Alpha oscillations vibrate at 8-14 Hz, strongly influencing brain activity [12,13] It is through these fast alpha and gamma oscillations that we suggest an 'internal' neural space is formed, providing an infrastructure for visual consciousness. Neuronal synchronization with the lateral geniculate nucleus (LGN) through oscillations at 60-120 Hz is indicated by oscillatory activity in the retina, LGN, and cortex [21,22], which allows the brain and retina to receive and process visual stimuli as one organ. These retinogeniculocortical oscillations assist in the formation of the dynamic template that reduces external space into our internal world space we call the 3D default space. These fast oscillations an...
At present, researchers are unclear about which activity within the brain is responsible for the emergence of consciousness-the subconscious or unconscious. Current literature suggests that consciousness is isolated in the brain; however, we suggest consciousness emerges from both-subconscious and unconscious activity, in addition to sensory consciousness. This article contends that sensory consciousness arises from neurophysiological brain activity, intrapersonal space, sensory information, and parallel processing of the external and internal environment through vision, olfaction, the integumentary system, gustation, and audition. Traditionally, lateral inhibition is defined as the ability for an excited neuron to laterally inhibit its neighbors, and is an integral part of neurophysiology in all senses. In this article, we are connecting the science behind the well-established physiological observations of gamma wave activity in the interneurons of peripheral receptors with what is currently unknown regarding the functional significance of seemingly unrelated gamma activity in the cortico-thalamic gamma oscillations. We suggest that this allows for instantaneous integration of the brain with sensory receptors. This article uses existing literature on lateral inhibition to investigate its role in sensory organs and various areas of the body. We explain how sensory consciousness is only one component of unified consciousness. We propose that lateral inhibition also plays a vital role in consciousness theory, and understanding this can help illustrate the dynamic interactions between the central and peripheral nervous systems within the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.