The objective of this study was to evaluate the contribution of muscle protein turnover (synthesis and degradation) to the biological basis for genetic differences in finisher pigs selected for residual feed intake (RFI). Residual feed intake is defined as the difference between expected feed intake (based on the achieved rate of BW gain and backfat depth of individual pigs) and the observed feed intake of the individual pig. We hypothesized that protein turnover would be reduced in pigs selected for low RFI. Twelve gilts from a line selected for 7 generations for low RFI and 12 from a contemporary line selected for 2 generations for high RFI were paired by age and BW and fed a standard corn-soybean diet for 6 wk. Pigs were euthanized, muscle and liver samples were collected, and insulin signaling, protein synthesis, and protein degradation proteins were analyzed for expression and activities. Muscle from low RFI pigs tended to have less μ-and m-calpain activities (P = 0.10 and 0.09, respectively) and had significantly greater calpastatin activity and a decreased μ-calpain:calpastatin activity ratio (P < 0.05). Muscle from low RFI pigs had less 20S proteasome activity compared with their high RFI counterparts (P< 0.05). No differences in insulin signaling intermediates and translation initiation signaling proteins [mammalian target of rapamycin (mTOR) pathway] were observed (P > 0.05). Postmortem proteolysis was determined in the LM from the eighth generation of the low RFI pigs versus their high RFI counterparts (n = 9 per line). Autolysis of μ-calpain was decreased in the low RFI pigs and less troponin-T degradation product was observed at 3 d postmortem (P < 0.05), indicating slowed postmortem proteolysis during aging in the low RFI pigs. These data provide significant evidence that less protein degradation occurs in pigs selected for reduced RFI, and this may account for a significant portion of the increased efficiency observed in these animals. KeywordsSwine Feed Efficiency, calpain, calpastatin, proteasome, protein synthesis, residual feed intake, swine ABSTRACT: The objective of this study was to evaluate the contribution of muscle protein turnover (synthesis and degradation) to the biological basis for genetic differences in finisher pigs selected for residual feed intake (RFI). Residual feed intake is defined as the difference between expected feed intake (based on the achieved rate of BW gain and backfat depth of individual pigs) and the observed feed intake of the individual pig. We hypothesized that protein turnover would be reduced in pigs selected for low RFI. Twelve gilts from a line selected for 7 generations for low RFI and 12 from a contemporary line selected for 2 generations for high RFI were paired by age and BW and fed a standard corn-soybean diet for 6 wk. Pigs were euthanized, muscle and liver samples were collected, and insulin signaling, protein synthesis, and protein degradation proteins were analyzed for expression and activities. Muscle from low RFI pigs tended to have less ...
Objectives were to investigate the effects of prolonged gestational and/or postnatal heat stress on performance and carcass composition of market weight pigs. Pregnant gilts were exposed to gestational heat stress (GHS, 28°C to 34°C, diurnal) or thermal neutral (18°C to 22°C, diurnal) conditions during the entire gestation or during the first or second half of gestation. At 14 wk of age (58 ± 5 kg), barrows were housed in heat stress (32°C, HS) or thermal neutral (21°C, TN) conditions. Feed intake and BW were recorded weekly, and body temperature parameters were monitored twice weekly until slaughter (109 ± 5 kg). Organs were removed and weighed, and loin eye area (LEA) and back fat thickness (BF) were measured after carcass chilling. Carcass sides were separated into lean, separable fat, bone, and skin components and were weighed. Moisture, lipid, and protein content were determined in the LM at the 10th rib. Data were analyzed using a split plot with random effect of dam nested within gestational treatment. Carcass measurements included HCW as a covariate to control for weight. Planned orthogonal contrast statements were used to evaluate the overall effect of GHS in the first half, second half, or any part of gestation. Gestational heat stress did not alter postnatal performance or most body temperature parameters (P > 0.10). However, ADFI in the finishing period was increased (P < 0.05) in response to GHS, particularly in pigs receiving GHS in the first half of gestation. Gestational heat stress during the first half of gestation decreased head weight as a percent of BW (P = 0.02), whereas GHS in the second half of gestation decreased bone weight as a percent of BW (P = 0.02). Heat stress reduced ADG, BW, and HCW (P < 0.0001). Lean tissue was increased in HS pigs on both a weight and percentage basis (P < 0.0001), but LEA was similar to TN carcasses (P = 0.38). Carcasses from HS barrows also had less carcass separable fat (P < 0.01) and tended to have less BF (P = 0.06) compared with those from TN barrows, even after controlling for HCW. However, percent intramuscular fat did not differ between treatments (P = 0.48). The LM from HS carcasses had a greater moisture to protein ratio (P = 0.04). HS barrows also had decreased heart (P < 0.001) and kidney (P < 0.0001) as a percent of BW compared with TN pigs. In summary, GHS may affect head and bone development, subsequently affecting carcass composition. Chronic HS during finishing results in longer times to reach market weight and a leaner carcass once market weight is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.