Reinstatement of extinguished drug-seeking has been utilized in the study of the neural substrates of relapse to drugs of abuse, particularly cocaine. However, limited studies have examined the circuitry that drives the reinstatement of heroin-seeking behavior in the presence of conditioned cues, or by heroin itself. In order to test the hypothesis that the circuitry underlying reinstatement in heroinexperienced animals would show overlapping, yet distinct differences from cocaine-experienced animals, we used transient inhibition of several cortical, striatal, and limbic brain regions during reinstatement of heroin-seeking produced by heroin-paired cues, or by a single priming dose of heroin. Rats lever pressed for i.v. heroin discretely paired with a conditioned stimulus (CS) during daily 3-hr sessions for a period of 2 weeks, followed by daily extinction of lever responding. Subsequent reinstatement of heroin-seeking was measured as lever responding in the absence of heroin reinforcement. The first set of reinstatement tests involved response-contingent CS presentations following bilateral intracranial infusion of either a combination of GABA receptor agonists (baclofen-muscimol, B/M) or vehicle (saline) into one of thirteen different brain regions. The second set of reinstatement tests involved a single heroin injection (0.25 mg/kg, s.c.) following either B/M or vehicle infusions. Our results showed that vehicle infused animals reinstated to both CS presentations and a priming injection of heroin, while B/M inactivation of several areas known to be important for the reinstatement of cocaine-seeking also attenuated heroin-seeking in response to CS presentations and/or a priming dose of heroin. However, as predicted, inactivation of areas previously shown to not affect cocaine-seeking significantly attenuated heroin-seeking, supporting the hypothesis that the circuitry underlying the reinstatement of heroin-seeking is more diffusely distributed than that for cocaine.
The medial prefrontal cortex (mPFC) is critical for reinstatement of cocaine seeking and is the main source of brain-derived neurotrophic factor (BDNF) to striatal regions of the brain relapse circuitry. To test the hypothesis that BDNF in the mPFC regulates cocaine-seeking behavior, rats were trained to press a lever for cocaine infusions (0.2 mg/inf, 2 h/day) paired with light+tone conditioned stimulus (CS) presentations on 10 consecutive days. After the last self-administration session, rats received a single infusion of BDNF (0.75 microg/0.5 microL/side) into the mPFC; this manipulation produced protracted effects on cocaine-seeking behavior (non-reinforced lever pressing). BDNF pretreatment administered after the last session attenuated cocaine seeking 22 h later and, remarkably, it also blocked cocaine-induced suppression of phospho-extracellular-regulated kinase and elevated BDNF immunoreactivity in the nucleus accumbens. The same pretreatment also suppressed cocaine-seeking behavior elicited by response-contingent CS presentations after 6 days of forced abstinence or extinction training, as well as a cocaine challenge injection (10 mg/kg, i.p.) after extinction training. However, BDNF infused into the mPFC had no effect on food-seeking behavior. Furthermore, BDNF infused on the sixth day of abstinence failed to alter responding, suggesting that the regulatory influence of BDNF is time limited. The suppressive effects of BDNF infused into the mPFC on cocaine seeking indicate that BDNF regulates cortical pathways implicated in relapse to drug seeking and that corticostriatal BDNF adaptations during early abstinence diminish compulsive drug seeking.
Rationale Male rats escalate methamphetamine (meth) intake during long access meth self-administration, show enhanced reinstatement of meth seeking, and exhibit meth-induced memory impairments. However, the impact of long access daily meth self-administration on reinstatement and cognitive dysfunction has not been assessed in females, even though clinical studies on meth addiction have shown differences between men and women. Objectives This study determined whether male and freely-cycling female rats: 1) escalate meth-intake in a 6-h daily access period relative to 1-h access; 2) show different sensitivity to meth primed reinstatement after short and long access conditions; and 3) show deficits in novel object and object in place recognition memory. Methods Male and female Long-Evans rats self-administered meth in limited (1-h/day) or extended (6-h/day) daily access sessions. After 21 days, meth access was discontinued and rats entered an abstinence period. On the 7th and 14th days of abstinence, rats were assessed for recognition memory using tests for: a) novel object recognition memory, and b) object-in-place memory. Rats were tested for reinstatement of meth-seeking following extinction of responding. Results Female rats self-administered more meth and escalated intake faster than males during extended, but not limited, daily access. Both males and females in the extended, but not limited, access groups showed memory deficits on both tasks. Female rats showed greater reinstatement to meth-seeking with lower doses of meth priming injections than males. Conclusions Relative to males, females were equally susceptible to meth-induced memory deficits, but exhibited higher meth intake and greater relapse to meth-seeking.
Background Tobacco addiction is a relapsing disorder that constitutes a substantial worldwide health problem, with evidence suggesting that nicotine and nicotine-associated stimuli play divergent roles in maintaining smoking behavior in men and women. While animal models of tobacco addiction that utilize nicotine self-administration have become more widely established, systematic examination of the multiple factors that instigate relapse to nicotine-seeking have been limited. Here, we examined nicotine self-administration and subsequent nicotine-seeking in male and female Sprague-Dawley rats using an animal model of self-administration and relapse. Methods Rats lever pressed for nicotine (0.03 and 0.05 mg/kg/infusion, IV) during 15 daily 2-h sessions, followed by extinction of lever responding. Once responding was extinguished, we examined the ability of previously nicotine-paired cues (tone+light), the anxiogenic drug yohimbine (2.5 mg/kg, IP), a priming injection of nicotine (0.3 mg/kg, SC), or combinations of drug+cues to reinstate nicotine-seeking. Results Both males and females readily acquired nicotine self-administration and displayed comparable levels of responding and intake at both nicotine doses. Following extinction, exposure to the previously nicotine-paired cues or yohimbine, but not the nicotine-prime alone, reinstated nicotine-seeking in males and females. Moreover, when combined with nicotine-paired cues, both yohimbine and nicotine enhanced reinstatement. No significant sex differences or estrous cycle dependent changes were noted across reinstatement tests. Conclusions These results demonstrate the ability to reinstate nicotine-seeking with multiple modalities and that exposure to nicotine-associated cues during periods of a stressful state or nicotine can increase nicotine-seeking.
Previous studies have shown that female rats exhibit enhanced cocaine seeking during multiple phases of cocaine addiction compared with males. The orexin/hypocretin system recently has been implicated in drug addiction in male rats. Based on the known sex differences in cocaine addiction, in the current study we examined orexin-mediated cocaine seeking during self-administration, extinction, and reinstatement in agematched male (initial weight 250 -300 g) and female (initial weight 175-225 g) Sprague-Dawley rats by using the orexin-1 receptor (OX1R) antagonist 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB-334867) (10 -30 mg/kg). OX1R blockade had no effect on established cocaine self-administration, but attenuated cocaine seeking during extinction in both male and female rats. It is noteworthy that OX1R blockade potently attenuated cue-induced reinstatement in males but had no effect on females. SB-334867 also reduced cocaine seeking during pharmacological stress-induced (yohimbine, 2.5 mg/kg) and yohimbine ϩ cue-induced reinstatement in both sexes. SB-334867 failed to affect reinstatement induced by cocaine (10 mg/kg) in either male or female rats, but selectively reduced cocaine ϩ cue-induced reinstatement only in males. In separate experiments examining basal and cocaine-induced locomotion, SB-334867 attenuated locomotion in both male and female rats. Finally, assessment of plasma and brain levels of SB-334867 showed that estrus females had slightly higher plasma levels than diestrus females, but no overall sex differences or estrous cycle differences were observed in plasma or brain SB-334867 concentrations. These results show that OX1R signaling plays a role in mediating cocaine seeking, but differs between the sexes for cue-induced reinstatement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.