Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control.
Whether or not primary norovirus infections induce protective immunity has become a controversial issue, potentially confounded by the comparison of data from genetically distinct norovirus strains. Early human volunteer studies performed with a norovirus-positive inoculum initially led to the conclusion that primary infection does not generate long-term, protective immunity. More recently though, the epidemiological pattern of norovirus pandemics has led to the extrapolation that primary norovirus infection induces herd immunity. While these are seemingly discordant observations, they may in fact reflect virus strain-, cluster-, or genogroup-specific differences in protective immunity induction. Here, we report that highly genetically related intra-cluster murine norovirus strains differ dramatically in their ability to induce a protective immune response: Primary MNV-3 infection induced robust and cross-reactive protection, whereas primary MNV-1 infection induced modest homotypic and no heterotypic protection. In addition to this fundamental observation that intra-cluster norovirus strains display remarkable differences in protective immunity induction, we report three additional important observations relevant to norovirus:host interactions. First, antibody and CD4+ T cells are essential to controlling secondary norovirus infections. Second, the viral minor structural protein VP2 regulates the maturation of antigen presenting cells and protective immunity induction in a virus strain-specific manner, pointing to a mechanism by which MNV-1 may prevent the stimulation of memory immune responses. Third, VF1-mediated regulation of cytokine induction also correlates with protective immunity induction. Thus, two highly genetically-related norovirus strains displayed striking differences in induction of protective immune responses, strongly suggesting that the interpretation of norovirus immunity and vaccine studies must consider potential virus strain-specific effects. Moreover, we have identified immune (antibody and CD4+ T cells) and viral (VP2 and possibly VF1) correlates of norovirus protective immunity. These findings have significant implications for our understanding of norovirus immunity during primary infections as well as the development of new norovirus vaccines.
Viral infections cause an immunological disequilibrium that provokes CD8 T cell responses. These cells play critical roles in purging acute infections, limiting persistent infections, and conferring life-long protective immunity. At every stage of the response anti-viral CD8 T cells are sensitive to signals from cytokines. Initially cytokines operate as immunological warning signs that inform of the presence of an infection, and also influence the developmental choices of the responding cells. Later during the course of the response other sets of cytokines support the survival and maintenance of the differentiated anti-viral CD8 T cells. Although many cytokines promote virus-specific CD8 T cells, other cytokines can suppress their activities and thus favor viral persistence. In this review we discuss how select cytokines act to regulate anti-viral CD8 T cells throughout the response and influence the outcome of viral infections.
Human noroviruses are responsible for more than 95% of nonbacterial epidemic gastroenteritis worldwide. Both onset and resolution of disease symptoms are rapid, suggesting that components of the innate immune response are critical in norovirus control. While the study of the human noroviruses has been hampered by the lack of small animal and tissue culture systems, our recent discovery of a murine norovirus (MNV) and its in vitro propagation have allowed us to begin addressing norovirus replication strategies and immune responses to norovirus infection. We have previously demonstrated that interferon responses are critical to control MNV-1 infection in vivo and to directly inhibit viral replication in vitro. We now extend these studies to define the molecular basis for interferon-mediated inhibition. Viral replication intermediates were not detected in permissive cells pretreated with type I interferon after either infection or transfection of virion-associated RNA, demonstrating a very early block to virion production that is after virus entry and uncoating. A similar absence of viral replication intermediates was observed in infected primary macrophages and dendritic cells pretreated with type I IFN. This was not due to degradation of incoming genomes in interferon-pretreated cells since similar levels of genomes were present in untreated and pretreated cells through 6 h of infection, and these genomes retained their integrity. Surprisingly, this block to the translation of viral proteins was not dependent on the well-characterized interferon-induced antiviral molecule PKR. Similar results were observed in cells pretreated with type II interferon, except that the inhibition of viral translation was dependent on PKR. Thus, both type I and type II interferon signaling inhibit norovirus translation in permissive myeloid cells, but they display distinct dependence on PKR for this inhibition.
Human noroviruses are significant emerging pathogens, causing the majority of non-bacterial gastroenteritis outbreaks worldwide. The recent discovery of 30 murine norovirus strains is beginning to facilitate a detailed investigation of norovirus pathogenesis. Here, we have performed an in vivo comparative analysis of two murine norovirus strains, MNV-1 and MNV-3. In immunocompetent mice, MNV-1 caused modest intestinal pathology whereas MNV-3 was attenuated compared to MNV-1. Surprisingly though, MNV-3 reached higher titers in intestinal tissue than MNV-1. MNV-3 also displayed attenuation in mice deficient in the critical interferon signaling molecule STAT-1, demonstrating that MNV-3 attenuation is not a result of increased interferon sensitivity. Importantly, MNV-3-infected mice lost weight and developed gastric bloating and diarrhea in STAT1−/− mice, from which all animals recovered. This disease profile recapitulates several key features of acute gastroenteritis experienced by people infected with a human norovirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.