Due to the voluntary withdrawals and/or bans on the use of two polybrominated diphenyl ether (PBDE) commercial mixtures, an increasing number of alternate flame retardant chemicals are being introduced in commercial applications. To determine if these alternate BFRs are present in indoor environments, we analyzed dust samples collected from 19 homes in the greater Boston, MA area during 2006. Using pure and commercial standards we quantified the following brominated flame retardant chemicals using GC/ECNI-MS methods: hexabromocyclododecane (sigma HBCD), bis(2,4,6,-tribromphenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and the brominated components found in Firemaster 550 (FM 550): 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and (2-ethylhexyl)tetrabromophthalate (TBPH), the latter compound being a brominated analogue of di(2-ethylhexyl)phthalate (DEHP). The concentrations of all compounds were log-normally distributed and the largest range in concentrations was observed for HBCD (sum of all isomers), with concentrations ranging from <4.5 ng/g to a maximum of 130,200 ng/g with a median value of 230 ng/g. BTBPE ranged from 1.6 to 789 ng/g with a median value of 30 ng/g and DBDPE ranged from <10.0 to 11,070 ng/g with a median value of 201 ng/g. Of the FM 550 components, TBB ranged from <6.6 to 15,030 ng/g with a median value of 133 ng/g; whereas TBPH ranged from 1.5 to 10,630 ng/g with a median value of 142 ng/g. Furthermore, the ratio of TBB/TBPH present in the dust samples ranged from 0.05 to 50 (average 4.4), varying considerably from the ratio observed in the FM 550 commercial mixture (4:1 by mass), suggesting different sources with different chemical compositions, and/or differential fate and transport within the home. Analysis of paired dust samples collected from different rooms in the same home suggests HBCD, TBB, and TBPH are higher in dust from the main living area compared to dust collected in bedrooms; however, BTBPE and DBDPE levels were comparable between rooms. This study highlights the fact that numerous types of brominated flame retardants are present in indoor environments, raising questions about exposure to mixtures of these contaminants.
BackgroundPolybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that accumulate in human tissues and are potential toxicants. Concentrations of PBDEs in human tissues have increased recently, and body burdens in the U.S. and Canadian populations are higher than in any other region.ObjectivesAlthough metabolism in animal laboratory studies has been examined, no studies have explored the metabolism of these contaminants in human tissues. We undertook this study to determine whether PBDEs could be metabolized by human liver cells in vitro and to identify what types of metabolites are formed.MethodsWe exposed hepatocytes from three different donors (two cryopreserved batches and one fresh batch) to solutions containing 10 μM of either of two environmentally relevant and prominent PBDE congeners—BDE-99 or BDE-209—for periods of 24–72 hr. We also conducted gene expression analysis to provide information on potential induction of xenobiotic metabolizing enzymes.ResultsExposing hepatocytes to BDE-99 resulted in the formation of 2,4,5-tribromo phenol, two monohydroxylated pentabrominated diphenyl ether metabolites, and a yet unidentified tetrabrominated metabolite. No hydroxylated or debrominated metabolites were observed in the cells exposed to BDE-209. This suggests that BDE-209 was not metabolized, that nonextractable, covalently protein-bound metabolites were formed, or that the exposure time was not long enough for BDE-209 to diffuse into the cell to be metabolized. However, we observed up-regulation of genes encoding for cytochrome P450 monooxygenase (CYP) 1A2, CYP3A4, deiodinase type 1, and glutathione S-transferase M1 in hepatocyes exposed to both BDE-99 and BDE-209.ConclusionsOur in vitro results suggest that the human liver will likely metabolize some BDE congeners (e.g., BDE-99) in vivo. These metabolites have been shown to elicit greater toxicity than the parent BDE congeners in laboratory bioassays; thus, more research on body burdens and human health effects from these metabolites are warranted.
Estimates of exposure to the flame-retardant polybrominated diphenyl ethers (PBDEs) in dust are very poor due to limited knowledge about dust ingestion. This study was undertaken to determine if PBDEs could be measured on hand wipes, and if so, to determine the distribution of levels present on the skin surface area to provide preliminary exposure estimates from hand-to-mouth contact. Hand wipes were collected from 33 individuals residing in the United States using sterile gauze pads soaked in isopropyl alcohol. The total PBDE residue collected on the wipes ranged from 2.60 to 1982 ng, with a median value of 130 ng, or normalized to hand surface area, a concentration of 135 pg/cm2. The fully brominated congener, BDE 209, was also detected and ranged from < DL to 270 ng with a median value of 26 ng. Congener patterns observed on the wipes were similar to patterns observed in house dust samples, consisting of congeners associated with the PentaBDE and DecaBDE mixtures, suggesting that the source of PBDEs to the hands may be dust particles. However, PBDE hand residues may also be a result of direct contact with PBDE-laden products, leading to adsorption to the skin surface oils. Repeated wipe sampling from three individuals suggests that sigmaPBDE levels on the hand may be relatively consistent for some individuals but not for others. Furthermore, levels of sigmaPBDEs were greater on the bottom of the hands relative to the top of the hands. Using these values we have calculated potential human exposure from hand-to-mouth contact. The median exposure estimates for children and adults are 1380 and 154 ng/day, respectively, whereas the 95th percentile exposure estimates were 6090 and 677 ng/day, respectively. These estimates are greater than dietary intake rates and suggest hand-to-mouth contact may be a key exposure route for PBDEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.