A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae), in a 15.2 km2 area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready alfalfa seed production fields (totaling 120.2 ha). Each year, honey bee self-marking devices were placed on 112 selected honey bee colonies originating from nine different apiary locations. The foraging bees exiting each apiary location were uniquely marked so that the apiary of origin and the distance traveled by the marked (field-collected) bees into each of the alfalfa fields could be pinpointed. Honey bee self-marking devices were installed on 14.4 and 11.2% of the total hives located within the research area in 2006 and 2007, respectively. The frequency of field-collected bees possessing a distinct mark was similar, averaging 14.0% in 2006 and 12.6% in 2007. A grand total of 12,266 bees were collected from the various alfalfa fields on seven sampling dates over the course of the study. The distances traveled by marked bees ranged from a minimum of 45 m to a maximum of 5983 m. On average, marked bees were recovered ∼ 800 m from their apiary of origin and the recovery rate of marked bees decreased exponentially as the distance from the apiary of origin increased. Ultimately, these data will be used to identify the extent of pollen-mediated gene flow from Roundup Ready to conventional alfalfa.
Predictive equations for alfalfa quality (PEAQ) based on height of the tallest stem and maturity stage of the most mature stem in a sample were developed to estimate neutral‐detergent fiber (NDF) and acid‐detergent fiber (ADF) concentrations in alfalfa (Medicago sativa L.). Field testing of these equations is limited outside the state of Wisconsin where they were developed. Our objectives were to test these equations for estimating alfalfa NDF and ADF across a wide geographic area and to evaluate the performance of PEAQ on a whole‐field basis by using within‐field subsampling. Alfalfa samples varying in height and maturity were collected throughout the growing season from fields in New York (n = 28), Pennsylvania (n = 23), Ohio (n = 48), California (n = 45), and Wisconsin (n = 48) in 1994 to 1996. Additional samples were collected in Ohio and Wisconsin from producer‐managed fields in which 5 to 10 subsamples per field were taken on each sampling date (n = 296 subsamples from 51 fields). Observed NDF and ADF values were regressed on estimated values. The accuracy of PEAQ in other states was at least equal to that observed in Wisconsin. Across all states, regression equations for NDF and ADF were slightly biased (b ≠ 1.0 and/or y‐intercept ≠ 0 at P < 0.01); however, prediction errors were sufficiently low to allow use of PEAQ as a preharvest management tool. Root mean square error values ranged from 19.1 to 23.9 g kg−1 for NDF and 15.0 to 19.0 g kg−1 for ADF. Prediction errors were 16.2 g kg−1 for NDF and 13.2 g kg−1 for ADF across Ohio and Wisconsin when regressing observed means on estimated means of five subsamples per fieldsampling date combination. We conclude that predictive equations for alfalfa quality based on a combination of stem height and maturity were robust across a wide range of environments.
Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for “protein-marked” bees.
California has two primary cantaloupe (or muskmelon; Cucumis melo L.) production areas: the southern desert valleys in Imperial and Riverside Counties and the San Joaquin Valley (Fresno, Kern, Kings, Merced, and Stanislaus Counties). Melons in the southern desert valleys are planted from late December through March for harvest from May through early July. In the San Joaquin Valley, planting begins in February in the south and continues northward through July; harvest begins in late June and continues into October. Overall, plantings are timed to provide a continuous supply of melons from May through October.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.