Phenotypic plasticity in response to environmental cues can create distinct morphological types within populations. This variation in form, and potentially function, may be a factor in initiating population divergence and the formation of new species. Here we show the translation of sympatric, habitat-specific morphological divergence into performance differences in energy economy, maneuverability and steady-state locomotion. Littoral and pelagic bluegill sunfish ecomorphs show differences in performance that appear adaptive within their respective habitats: greater maneuverability in the heavily vegetated littoral; greater steady-state swimming speed and economy in the open-water pelagic. This represents a trade-off in unsteady versus steady swimming performance, likely because morphological features associated with maximizing maneuverability are incompatible with enhancing steady-swimming performance. This may constrain the direction of adaptive change, maintaining the divergence created by phenotypic plasticity. The combination of habitat specific sympatric adaptation and constraints imposed by performance trade-offs may be an important factor underlying the high rate of speciation in freshwater fishes from post-glacial lakes.
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.
BackgroundNormal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells.ResultsWe have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner.ConclusionThere are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression.
Bluegill sunfish Lepomis macrochirus exhibit intraspecific variation in their morphology and swimming performance based on habitat. The pelagic form has a relatively streamlined, fusiform body shape associated with greater steady-state swimming speed and energy economy. In contrast, littoral bluegill have deeper bodies with fins located farther from their center of mass to enhance maneuverability among littoral vegetation. Deeper body shapes have been associated with increased fast-start performance to escape predators or capture prey. We hypothesized that littoral bluegill, which have a deeper body shape, would exhibit greater fast-start performance than pelagic bluegill. A total of 29 bluegill (16 littoral, 13 pelagic) were caught by hook and line, and their fast-start performance was analyzed from high-speed video recordings. Body shape appears to be a poor predictor of fast-start performance. Contrary to our expectations, pelagic bluegill had a significantly higher peak velocity, peak acceleration, and angular velocity compared to littoral bluegill. Pelagic bluegill living among larger predators and foraging on mobile prey may be exposed to selection pressures that favor increased fast-start performance. Integrated studies of internal morphology and physiology are needed to fully understand the relationship between morphology and performance in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.