This paper develops a logistic approximation to the cumulative normal distribution. Although the literature contains a vast collection of approximate functions for the normal distribution, they are very complicated, not very accurate, or valid for only a limited range. This paper proposes an enhanced approximate function. When comparing the proposed function to other approximations studied in the literature, it can be observed that the proposed logistic approximation has a simpler functional form and that it gives higher accuracy, with the maximum error of less than 0.00014 for the entire range. This is, to the best of the authors' knowledge, the lowest level of error reported in the literature. The proposed logistic approximate function may be appealing to researchers, practitioners and educators given its functional simplicity and mathematical accuracy.
Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC) systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic. Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds. Findings: The findings of this paper are summarized as follow: •Provide and validate a platform (agent-based microscopic traffic simulator) in which any CACC algorithm (current or future) may be evaluated. •Provide detailed analysis associated with implementation of CACC vehicles on freeways. •Investigate whether embedding CACC vehicles on freeways has a significant positive impact or not. Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory experiments and/or simulations provide a controlled setting, well suited for preliminary testing and calibrating of the input variables. However, laboratory testing is by no means sufficient for the entire methodology validation. It must be complemented by fundamental field testing. As far as the simulation model limitations, accidents, weather conditions, and obstacles in the roads were not taken into consideration. Failures in the operation of the sensors and communication of CACC design equipment were also not considered. Additionally, the special HOV lanes were limited to manual vehicles and CACC vehicles. Emergency vehicles, buses, motorcycles, and other type of vehicles were not considered in this dissertation. Finally, it is worthy to note that the human factor is far more sophisticated, hard to predict, and flexible to be exactly modeled in a traffic simulation model perfectly. Some human behavior could occur in real life that the simulation model proposed would fail...
Cooperative adaptive cruise control (CACC) vehicles are intelligent vehicles that use vehicular ad hoc networks (VANETs) to share traffic information in real time. Previous studies have shown that CACC could have an impact on increasing highway capacities at high market penetration. Since reaching a high CACC market penetration level is not occurring in the near future, this study presents a progressive deployment approach that demonstrates to have a great potential of reducing traffic congestions at low CACC penetration levels. Using a previously developed microscopic traffic simulation model of a freeway with an on-ramp -created to induce perturbations and trigger stop-and-go traffic, the CACC system s effect on the traffic performance is studied. The results show significance and indicate the potential of CACC systems to improve traffic characteristics which can be used to reduce traffic congestion. The study shows that the impact of CACC is positive and not only limited to a high market penetration. By giving CACC vehicles priority access to high-occupancy vehicle (HOV) lanes, the highway capacity could be significantly improved with a CACC penetration as low as 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.