During migraine attacks, alterations in sensation accompanying headache may manifest as allodynia and enhanced sensitivity to light, sound, and odors. Our objective was to identify physiological changes in cortical regions in migraine patients using painful heat and functional magnetic resonance imaging (fMRI) and the structural basis for such changes using diffusion tensor imaging (DTI). In 11 interictal patients, painful heat threshold + 1°C was applied unilaterally to the forehead during fMRI scanning. Significantly greater activation was identified in the medial temporal lobe in patients relative to healthy subjects, specifically in the anterior temporal pole (TP). In patients, TP showed significantly increased functional connectivity in several brain regions relative to controls, suggesting that TP hyperexcitability may contribute to functional abnormalities in migraine. In 9 healthy subjects, DTI identified white matter connectivity between TP and pulvinar nucleus, which has been related to migraine. In 8 patients, fMRI activation in TP with painful heat was exacerbated during migraine, suggesting that repeated migraines may sensitize TP. This article investigates a nonclassical role of TP in migraineurs. Observed temporal lobe abnormalities may provide a basis for many of the perceptual changes in migraineurs and may serve as a potential interictal biomarker for drug efficacy.
BackgroundThe brainstem contains descending circuitry that can modulate nociceptive processing (neural signals associated with pain) in the dorsal horn of the spinal cord and the medullary dorsal horn. In migraineurs, abnormal brainstem function during attacks suggest that dysfunction of descending modulation may facilitate migraine attacks, either by reducing descending inhibition or increasing facilitation. To determine whether a brainstem dysfunction could play a role in facilitating migraine attacks, we measured brainstem function in migraineurs when they were not having an attack (i.e. the interictal phase).Methods and FindingsUsing fMRI (functional magnetic resonance imaging), we mapped brainstem activity to heat stimuli in 12 episodic migraine patients during the interictal phase. Separate scans were collected to measure responses to 41°C and noxious heat (pain threshold+1°C). Stimuli were either applied to the forehead on the affected side (as reported during an attack) or the dorsum of the hand. This was repeated in 12 age-gender-matched control subjects, and the side tested corresponded to that in the matched migraine patients. Nucleus cuneiformis (NCF), a component of brainstem pain modulatory circuits, appears to be hypofunctional in migraineurs. 3 out of the 4 thermal stimulus conditions showed significantly greater NCF activation in control subjects than the migraine patients.ConclusionsAltered descending modulation has been postulated to contribute to migraine, leading to loss of inhibition or enhanced facilitation resulting in hyperexcitability of trigeminovascular neurons. NCF function could potentially serve as a diagnostic measure in migraine patients, even when not experiencing an attack. This has important implications for the evaluation of therapies for migraine.
BackgroundRecent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level – BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy.Methodology/Principal FindingsCortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2–6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions.ConclusionsOverall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.