Metal–organic frameworks (MOFs) with high stability and porosity have gained great attention in bioanalysis due to their potential in improving sensitivity and robustness of assays. Herein, to improve both the stability and the emission intensity of Cu nanoclusters (CuNCs), in situ entrapment strategy of CuNCs into zeolitic imidazolate framework-8 (ZIF-8) is described. Blue emissive and stable CuNCs was prepared, for the first time, using thiamine hydrochloride as capping agents, and showed strong and stable emission at 440 nm when excited at 375 nm with fluorescence quantum yields 12%. Encapsulation of CuNC into ZIF-8 showed dramatic enhancement of the fluorescence intensity up to 53% fluorescence quantum yield. Furthermore, the CuNCs@ZIF-8 possesses better stability (more than three months) due to protective and confinement effect of MOFs. Upon the addition of tetracycline to CuNCs@ZIF-8 solution, the blue emission intensity was significantly decreased. The fluorescence ratio (Fo/F) against the concentration of tetracycline exhibited a satisfactory linear relationship from 1.0 to 10.0 µM with a detection limit (LOD) of 0.30 µM. The current probe was applied for quantification of tetracycline in drug sample with satisfactory accuracy and precision.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.