Background"Nubiotics" are synthetic oligonucleotides and nucleotides with nuclease-resistant backbones, and are fully protonated for enhanced ability to be taken up by bacterial cells. Nu-3 [butyl-phosphate-5'-thymidine-3'-phosphate-butyl], one of the family members of Nubiotics was efficacious in the treatment of burn-wound infections by Pseudomonas aeruginosa in mice. Subsequent studies revealed that Nu-3 had a favorable toxicological profile for use as a pharmaceutical agent. This study evaluated the antibacterial activity of Nu-3 in vitro and its efficacy as a topical antibiotic. In addition, we investigated the possible mechanisms of Nu-3 action at the levels of DNA synthesis and bacterial membrane changes.MethodsAntimicrobial minimum inhibitory concentrations (MIC) experiments with Nu-3 and controls were measured against a range of Gram-positive and Gram-negative bacteria, including some hospital isolates according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Analysis of the killing kinetics of Nu-3 was also performed against two strains (Staphylococcus aureus cvcc 2248 and Pseudomonas aeruginosa cvcc 5668). The mouse skin suture-wound infection model was used to evaluate the antibacterial activity of Nu-3. We used a 5-Bromo-2'-deoxy-uridine Labeling and Detection Kit III (Roche, Switzerland) to analyze DNA replication in bacteria according to the manufacturer's instruction. The BacLight™ Bacterial Membrane Potential Kit (Invitrogen) was used to measure the bacterial membrane potential in S. aureus.ResultsNu-3 had a wide antibacterial spectrum to Gram-positive, Gram-negative and some resistant bacteria. The MIC values of Nu-3 against all tested MRSA and MSSA were roughly in a same range while MICs of Oxacillin and Vancomycin varied between the bacteria tested. In the mouse model of skin wound infection study, the treatment with 5% Nu-3 glycerine solution also showed comparable therapeutic effects to Ciprofloxacin Hydrochloride Ointment. While Nu-3 had no effect on DNA synthesis of the tested bacteria as demonstrated in a BrdU assay, it could cause bacterial cell membrane depolarization, as measured using a BacLight™ Bacterial Membrane Potential Kit.ConclusionsThese results provide additional experimental data that are consistent with the hypothesis that Nu-3 represents a new class of antibacterial agents for treating topical infections and acts via a different mechanism from conventional antibiotics.
Nu-3 [butyl-phosphate-5′-thymidine-3′-phosphate-butyl] is a modified nucleotide that has been shown to have antimicrobial activity against a range of bacteria including Pseudomonas aeruginosa. However, data on the toxicological profile of Nu-3 are still lacking. In the present study, the toxicity of Nu-3 was evaluated by the following studies: acute oral toxicity, dermal and mucous membrane irritation, multiple-dose toxicity and genotoxicity in vivo and vitro. The acute oral toxicity test in mice showed that Nu-3 had an LD50 of 2001mg/kg body weight. The irritation tests on rats revealed that Nu-3 was not irritant, with an irritation scoring of 0. The multiple-dose toxicity study in rats showed that Nu-3 did not cause significant changes in histology, selected serum chemistry, and hematological parameters compared to the controls. Rats administrated with multiple-doses of Nu-3 showed no visible toxic symptoms. Both in vitro and in vivo, Nu-3 exhibited no notable genetic toxicity. Overall, the data suggest that Nu-3 is hypotoxic or nontoxic antimicrobial compound that warrants being further developed for treating Pseudomonas aeruginosa infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.