Explosive cyclones (ECs) over the northern Pacific Ocean during the cold season (October–April) over a 15-yr (2000–15) period are analyzed by using the Final (FNL) Analysis data provided by the National Centers for Environmental Prediction. These ECs are stratified into four categories according to their intensity: weak, moderate, strong, and super ECs. In addition, according to the spatial distribution of their maximum-deepening-rate positions, ECs are further classified into five regions: the Japan–Okhotsk Sea (JOS), the northwestern Pacific (NWP), the west-central Pacific (WCP), the east-central Pacific (ECP), and the northeastern Pacific (NEP). The occurrence frequency of ECs shows evident seasonal variations for the various regions over the northern Pacific. NWP ECs frequently occur in winter and early spring, WCP and ECP ECs frequently occur in winter, and JOS and NEP ECs mainly occur in autumn and early spring. The occurrence frequency, averaged maximum deepening rate, and developing and explosive-developing lifetimes of ECs decrease eastward over the northern Pacific, excluding JOS ECs, consistent with the climatological intensity distributions of the upper-level jet stream, midlevel positive vorticity, and low-level baroclinicity. On the seasonal scale, the occurrence frequency and spatial distribution of ECs are highly correlated with the intensity and position of the upper-level jet stream, respectively, and also with those of midlevel positive vorticity and low-level baroclinicity. Over the northwestern Pacific, the warm ocean surface also contributes to the rapid development of ECs. The composite analysis indicates that the large-scale atmospheric environment for NWP and NEP ECs shows significant differences from that for the 15-yr cold-season average. The southwesterly anomalies of the upper-level jet stream and positive anomalies of midlevel vorticity favor the prevalence of NWP and NEP ECs.
We report the synthesis of single-crystal La0.67Sr0.33MnO3 (LSMO) freestanding films with different crystal orientations. By using pulsed laser deposition, water soluble perovskite-like sacrificial layers Sr3Al2O6 (SAO) followed by LSMO films are grown on differently oriented SrTiO3 substrates. Freestanding LSMO films with different orientations are obtained by etching the SAO in pure water. All the freestanding films show room-temperature ferromagnetism and metallicity, independent of the crystal orientation. Intriguingly, the Curie temperature (TC) of the freestanding films is increased due to strain relaxation after releasing from the substrates. Our results provide an additional degree of freedom to tailor the properties of freestanding perovskite oxide heterostructures by crystal orientation and an opportunity to further integrate different oriented films together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.