Reversible data hiding in the encrypted domain (RDH-ED) is a technique that protects the privacy of multimedia in the cloud service. In order to manage three-dimensional (3D) models, a novel RDH-ED based on prediction error expansion (PEE) is proposed. First, the homomorphic Paillier cryptosystem is utilized to encrypt the 3D model for transmission to the cloud. In the data hiding, a greedy algorithm is employed to classify vertices of 3D models into reference and embedded sets in order to increase the embedding capacity. The prediction value of the embedded vertex is computed by using the reference vertex, and then the module length of the prediction error is expanded to embed data. In the receiving side, the data extraction is symmetric to the data embedding, and the range of the module length is compared to extract the secret data. Meanwhile, the original 3D model can be recovered with the help of the reference vertex. The experimental results show that the proposed method can achieve greater embedding capacity compared with the existing RDH-ED methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.