We study an organization’s one-time capacity investment in a renewable energy-producing technology with supply intermittency and net metering compensation. The renewable technology can be coupled with conventional technologies to form a capacity portfolio that is used to meet stochastic demand for energy. The technologies have different initial investments and operating costs, and the operating costs follow different stochastic processes. We show how to reduce this problem to a single-period decision problem and how to estimate the joint distribution of the stochastic factors using historical data. Importantly, we show that data granularity for renewable yield and electricity demand at a fine level, such as hourly, matters: Without energy storage, coarse data that does not reflect the intermittency of renewable generation may lead to an overinvestment in renewable capacity. We obtain solutions that are simple to compute, intuitive, and provide managers with a framework for evaluating the trade-offs of investing in renewable and conventional technologies. We illustrate our model using two case studies: one for investing in a solar rooftop system for a bank branch and another for investing in a solar thermal system for water heating in a hotel, along with a conventional natural gas heating system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.