The absence of tumor necrosis factor (TNF) causes lethal infection by Leishmania major in normally resistant C57BL/6J (B6.WT) mice. The underlying pathogenic mechanism of this fatal disease has so far remained elusive. We found that B6.WT mice deficient for the tnf gene (B6.TNF−/−) displayed not only a non-healing cutaneous lesion but also a serious infection of the liver upon L. major inoculation. Infected B6.TNF−/− mice developed an enlarged liver that showed increased inflammation. Furthermore, we detected an accumulating monocyte-derived macrophage population (CD45+F4/80+CD11bhiLy6Clow) that displayed a M2 macrophage phenotype with high expression of CD206, arginase-1, and IL-6, supporting the notion that IL-6 could be involved in M2 differentiation. In in vitro experiments, we demonstrated that IL-6 upregulated M-CSF receptor expression and skewed monocyte differentiation from dendritic cells to macrophages. This was countered by the addition of TNF. Furthermore, TNF interfered with the activation of IL-6-induced gp130-signal transducer and activator of transcription (STAT) 3 and IL-4-STAT6 signaling, thereby abrogating IL-6-facilitated M2 macrophage polarization. Therefore, our results support the notion of a general role of TNF in the inflammatory activation of macrophages and define a new role of IL-6 signaling in macrophage polarization downstream of TNF.
A growing number of genomic tools and databases were developed to facilitate the interpretation of genomic variants, particularly in coding regions. However, these tools are separately available in different online websites or databases, making it challenging for general clinicians, geneticists and biologists to obtain the first-hand information regarding some particular variants and genes of interest. Starting with coding regions and splice sties, we artificially generated all possible single nucleotide variants (n = 110 154 363) and cataloged all reported insertion and deletions (n = 1 223 370). We then annotated these variants with respect to functional consequences from more than 60 genomic data sources to develop a database, named VarCards (http://varcards.biols.ac.cn/), by which users can conveniently search, browse and annotate the variant- and gene-level implications of given variants, including the following information: (i) functional effects; (ii) functional consequences through different in silico algorithms; (iii) allele frequencies in different populations; (iv) disease- and phenotype-related knowledge; (v) general meaningful gene-level information; and (vi) drug–gene interactions. As a case study, we successfully employed VarCards in interpretation of de novo mutations in autism spectrum disorders. In conclusion, VarCards provides an intuitive interface of necessary information for researchers to prioritize candidate variations and genes.
Improvement in the clinical outcome of human cancers requires characterization of the genetic alterations underlying their pathogenesis. Large-scale genomic and transcriptomic characterization of papillary thyroid carcinomas (PTCs) in Western populations has revealed multiple oncogenic drivers which are essential for understanding pathogenic mechanisms of this disease, while, so far, the genetic landscape in Chinese patients with PTC remains uncharacterized. Here, we conducted a large-scale genetic analysis of PTCs from patients in China to determine the mutational landscape of this cancer. By performing targeted DNA amplicon and targeted RNA deep-sequencing, we elucidated the landscape of somatic genetic alterations in 355 Chinese patients with PTC. A total of 88.7% of PTCs were found to harbor at least one candidate oncogenic driver genetic alteration. Among them, around 72.4% of the cases carried BRAF mutations; 2.8% of cases harbored RAS mutations; and 13.8% of cases were characterized with in-frame gene fusions, including seven newly identified kinase gene fusions. TERT promoter mutations were likely to occur in a sub-clonal manner in our PTC cohort. The prevalence of somatic genetic alterations in PTC was significantly different between our Chinese cohort and TCGA datasets for American patients. Additionally, combined analyses of genetic alterations and clinicopathologic features demonstrated that kinase gene fusion was associated with younger age at diagnosis, larger tumor size, and lymph node metastasis in PTC. With the analyses of DNA rearrangement sites of RET gene fusions in PTC, signatures of chromosome translocations related to RET fusion events were also depicted. Collectively, our results provide fundamental insight into the pathogenesis of PTC in the Chinese population. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley& Sons, Ltd.
Gastric cancer is the fourth most common cancer worldwide, with a low 5-year survival rate. Epigenetic modification plays pivotal roles in gastric cancer development. However, the role of histone-modifying enzymes in gastric cancer remains largely unknown. Here we report that Sirt7, a NAD+-dependent class III histone deacetylase, is over-expressed in human gastric cancer tissues. Sirt7 level is significantly correlated with disease stage, metastasis, and survival. Knockdown of Sirt7 in gastric cancer cells inhibits cell proliferation and colony formation in vitro. In vivo subcutaneous xenograft results also show that Sirt7 knockdown can markedly repress gastric cancer cell growth. In addition, Sirt7 depletion induces apoptosis in gastric cancer cells via up-regulating expression of pro-apoptotic proteins and down-regulating anti-apoptotic proteins. Mechanically, Sirt7 binds to the promoter of miR-34a and deacetylases the H3K18ac, thus represses miR-34a expression. Reversely, depletion of miR-34a inhibits gastric cancer apoptosis induced by Sirt7 knockdown, and restores cellular capacity of proliferation and colony formation. miR-34a depletion reduces Sirt7-knockdown-induced arrest of gastric growth. Finally, miR-34a is tightly associated with survival of patients with gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.