Objective: Stress is a known trigger for seizures in patients with epilepsy (PWE). However, the association between stress and seizures has not been thoroughly investigated. In December 2019, an outbreak of coronavirus disease (COVID-19) occurred in Wuhan, Hubei province, China, causing tremendous collateral stress. This study was designed to evaluate the influence of the COVID-19 outbreak on seizures in PWE in the most severely affected area, Wuhan, and its surrounding cities. Methods: In this single-center, cross-sectional study, PWE were surveyed via online questionnaires between February 23 and March 5, 2020. Collected data included demographic information, epilepsy-related characteristics (seizure type, frequency, antiepileptic drugs [AEDs], and medication management), direct and perceived threat of COVID-19, and changes in seizures during the outbreak. Psychological comorbidities were evaluated by the Patient Health Questionnaire-9, Generalized Anxiety Disorder-7 items, and Insomnia Severity Index (ISI). Multivariate logistic regression was used to identify precipitants for seizure exacerbation. Results: We received 362 completed questionnaires after excluding 12 duplicates (response rate = 63.51%). A total of 31 (8.56%) patients had increased seizures during the outbreak. Exposure history to COVID-19 (P = .001), uncontrolled seizure after AED therapy (P = .020), seizure frequency of two or more times per month before the outbreak (P = .005), change of AED regimen during the outbreak (AED reduction, withdrawal, replacement, skipping altogether; P = .002), and worry about the adverse effect of the outbreak on overall seizure-related issues (severity = moderate to critical; P = .038) were risk factors for increased seizures. Significance: A minority of PWE experienced seizure exacerbation during the outbreak of COVID-19. Stress, uncontrolled seizures, and inappropriate change in AED regimen were associated with increased seizures. Based on these findings, stress might be an independent precipitant for triggering seizures in some PWE.
SUMMARY Although protein-misfolding-mediated neurodegenerative diseases have been linked to aging, how aging contributes to selective neurodegeneration remains unclear. We established spinocerebellar ataxia 17 (SCA17) knockin mice that inducibly express one copy of mutant TATA box binding protein (TBP) at different ages by tamoxifen-mediated Cre recombination. We find that more mutant TBP accumulates in older mouse and that this accumulation correlates with age-related decreases in Hsc70 and chaperone activity. Consistently, older SCA17 mice experienced earlier neurological symptom onset and more severe Purkinje cell degeneration. Mutant TBP shows decreased association with XBP1s, resulting in the reduced transcription of mesencephalic astrocyte-derived neurotrophic factor (MANF), which is enriched in Purkinje cells. Expression of Hsc70 improves the TBP-XBP1s interaction and MANF transcription, and overexpression of MANF ameliorates mutant TBP-mediated Purkinje cell degeneration via protein kinase C (PKC)-dependent signaling. These findings suggest that the age-related decline in chaperone activity affects polyglutamine protein function that is important for the viability of specific types of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.