BackgroundCalcium-dependent protein kinases (CDPKs) have been shown to play important roles in various physiological processes, including plant growth and development, abiotic and biotic stress responses and plant hormone signaling in plants.ResultsIn this study, we performed a bioinformatics analysis of the entire maize genome and identified 40 CDPK genes. Phylogenetic analysis indicated that 40 ZmCPKs can be divided into four groups. Most maize CDPK genes exhibited different expression levels in different tissues and developmental stages. Twelve CDPK genes were selected to respond to various stimuli, including salt, drought and cold, as well as ABA and H2O2. Expression analyses suggested that maize CDPK genes are important components of maize development and multiple transduction pathways.ConclusionHere, we present a genome-wide analysis of the CDPK gene family in maize for the first time, and this genomic analysis of maize CDPK genes provides the first step towards a functional study of this gene family in maize.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.
Understanding the diversity and community structure of arbuscular mycorrhizal fungi (AMF) is important for potentially optimizing their role in mining phosphorus (P) in agricultural ecosystems. Here, we conduct a comprehensive study to investigate the vertical distribution of AMF in a calcareous field and their temporal structure in maize-roots with fertilizer P application over a three-year period. The results showed that soil available-P response to P fertilization but maize yields did not. Phosphorus fertilization had no-significant effect on richness of AMF except at greater soil-depths. High P-supply reduced root colonization while optimum-P tended to increase colonization and fungal richness on all sampling occasions. Crop phenology might override P-supply in determining the community composition of active root inhabiting fungi. Significant differences in the community structure of soil AMF were observed between the controls and P treatments in surface soil and the community shift was attributable mainly to available-P, N/P and pH. Vertical distribution was related mainly to soil electrical conductivity and Na content. Our results indicate that the structure of AMF community assemblages is correlated with P fertilization, soil depth and crop phenology. Importantly, phosphorus management must be integrated with other agricultural-practices to ensure the sustainability of agricultural production in salinized soils.
Heat shock proteins 70 (HSP70s) are a highly conserved family of genes in eukaryotes, and are involved in a remarkable variety of cellular processes. In many plant positive-stranded RNA viruses, HSP70 participates in the construction of a viral replication complex and plays various roles during viral infection. Here, we found increased expression of HSP70 following infection by Rice stripe virus (RSV), a negative-stranded RNA virus, in both rice (the natural host) and Nicotiana benthamiana (an experimental host). Heat treatment of N. benthamiana (Nb) plants enhanced viral infection, whereas RSV infection was retarded and viral RNAs accumulated at a low level when HSP70 was silenced. In both bimolecular fluorescence complement and in vitro pull-down assays, the N-terminus of RSV RNA-dependent RNA polymerase (RdRp) interacted and co-localized with the HSP70s of both plants (OsHSP70 and NbHSP70). The localization of the N-terminus of RdRp when expressed alone was not obviously different from when it was co-expressed with OsHSP or NbHSP, and vice versa. RSV infection also had no effect on the localization of host HSP70. These results demonstrate that host HSP70 is necessary for RSV infection and probably plays a role in viral replication by interacting with viral RdRp, which provides the first evidence of an interacting host protein related to RSV replication, which has been little studied to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.