We reported here a new platform of supramolecular hydrogels cross-linked by the cooperation of metal-ligand coordination and hydrophobic interaction. A salicylaldehyde benzoyl hydrazone-terminal poly(ethylene glycol) (2SBH-PEG) was synthesized and formed small micelles in an aqueous environment. Addition of Ni connected the low-molecular-weight 2SBH-PEG into a metallopolymer via metal-ligand coordination and led to micelle aggregation, resulting in gelation due to the enhancement of hydrophobic interaction. The forming hydrogel, Ni-PEGel, exhibited rapid self-healing ability and reversible pH-responsive property. Because of the containing metal coordination bond, it was also sensitive to the strong competing ligands, such as ethylenediaminetetraacetic acid (EDTA) and pyridine. In addition, Ni-PEGel showed colorimetric changes when exposed to biogenic amine (BA) vapor. The color development of Ni-PEGel toward BAs makes it a good candidate in monitoring food spoilage.
Aiming at the problem that the reported smart optical metallohydrogels were limited with poor mechanical properties, we reported here a novel smart optical metallohydrogel (Al-hydrogel) with excellent elongation, shape-memory ability, self-healing property, and controllable fluorescence intensity. The Al-hydrogel was obtained by the HHPMA–Al3+ and carboxylate–Al3+ coordination after one-pot micellar copolymerization of acrylic acid (AAc), acrylamide (AAm), and hydrophobic arylhydrazone-based ligand (HHPMA). This hydrogel was able to extend up to 5000% of its original length without fracture. Its emission intensity was tunable by OH–/H+ or Zn2+/AAc and increased by 500% with 0.1 M OH– or Zn2+. Its tunable fluorescence enabled us to repeatedly pattern it. A reversible system consisting of Fe3+/H+, was implemented to control the shape of the Al-hydrogel, endowing the Al-hydrogel with shape-memory ability. This highly stretchable and multifunctional Al-hydrogel has potential applications in information transmission, wearable devices, and flexible sensors.
An experimental study on microwave plasma at atmospheric pressure was conducted by employing optical emission spectroscopy. Based on a microwave plasma generation device developed for nanoparticle synthesis, we studied the influence of input microwave power and gas flow rate on the optical emission behaviors and electron temperature of plasma using Ar, He, and N 2 as working gas, respectively. The physics behind these behaviors was discussed. The results are useful in characterizing microwave plasma at atmospheric pressure and can be used for improving nanoparticle synthesis system for commercial use in the future. V
Cellular labeling with inorganic nanoparticles such as magnetic iron oxide nanoparticles, quantum dots, and fluorescent silica nanoparticles is an important method for the noninvasive visualization of cells using various imaging modalities. Currently, this is mainly achieved through the incubation of cultured cells with the nanoparticles that eventually reach the intracellular compartment through specific or nonspecific internalization. This classic method is advantageous in terms of simplicity and convenience, but it suffers from issues such as difficulties in fully removing free nanoparticles (suspended in solution) and the lack of selectivity on cell types. This article reports an innovative strategy for the specific labeling of adherent cells without the concern of freely suspended nanoparticles. This method relies on a nanocomposite film that is prepared by homogeneously dispersing nanoparticles within a biodegradable polymeric film. When adherent cells are seeded on the film, they adhere, spread, and filtrate into the film through the micropores formed during the film fabrication. The pre-embedded nanoparticles are thus internalized by the cells during this infiltration process. As an example, fluorescent silica nanoparticles were homogeneously distributed within a polycaprolactone film by utilizing cryomilling and heat pressing. Upon incubation within physiological buffer, no silica nanoparticles were released from the nanocomposite film even after 20 d of incubation. However, when adherent cells (e.g., human mesenchymal stem cells) were grown on the film, they became fluorescent after 3 d, which suggests internalization of silica nanoparticles by cells. In comparison, the suspension cells (e.g., monocytes) in the medium remained nonfluorescent no matter whether there was the presence of adherent cells or not. This strategy eventually allowed the selective and concomitant labeling of mesenchymal stem cells during their harvest from bone marrow aspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.