The electron transport layer (ETL) has been extensively investigated as one of the important components to construct high-performance perovskite solar cells (PSCs). Among them, inorganic semiconducting metal oxides such as titanium dioxide (TiO2), and tin oxide (SnO2) present great advantages in both fabrication and efficiency. However, the surface defects and uniformity are still concerns for high performance devices. Here, we demonstrated a bilayer ETL architecture PSC in which the ETL is composed of a chemical-bath-deposition-based TiO2 thin layer and a spin-coating-based SnO2 thin layer. Such a bilayer-structure ETL can not only produce a larger grain size of PSCs, but also provide a higher current density and a reduced hysteresis. Compared to the mono-ETL PCSs with a low efficiency of 16.16%, the bilayer ETL device features a higher efficiency of 17.64%, accomplished with an open-circuit voltage of 1.041 V, short-circuit current density of 22.58 mA/cm2, and a filling factor of 75.0%, respectively. These results highlight the unique potential of TiO2/SnO2 combined bilayer ETL architecture, paving a new way to fabricate high-performance and low-hysteresis PSCs.
This study presents a clock synchronization method based on quantum entanglement which is simple and reliable and more efficient. The clock synchronization method based on quantum entanglement scheme can greatly improve the accuracy and precision of measurement. More importantly, the proposed method avoids synchronization error caused by traditional method due to the asymmetry of two-way delay. The probability of measuring the quantum state oscillates in cosine or sine fashion with propagation delay. The final experimental and simulation results are basically consistent with the theoretical results. The clock synchronization method based on quantum entanglement scheme can greatly imrprove the accuracy and precision of measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.