Physical therapy (physiotherapy), a complementary and alternative medicine therapy, has been widely applied in diagnosing and treating various diseases and defects. Increasing evidence suggests that convenient and non-invasive far-infrared (FIR) rays, a vital type of physiotherapy, improve the health of patients with cardiovascular disease, diabetes mellitus, and chronic kidney disease. Nevertheless, the molecular mechanisms by which FIR functions remain elusive. Hence, the purpose of this study was to review and summarize the results of previous investigations and to elaborate on the molecular mechanisms of FIR therapy in various types of disease. In conclusion, FIR therapy may be closely related to the increased expression of endothelial nitric oxide synthase as well as nitric oxide production and may modulate the profiles of some circulating miRNAs; thus, it may be a beneficial complement to treatments for some chronic diseases that yields no adverse effects.
Summary
In this study, we evaluate the effects of high hydrostatic pressure (HHP) and superfine grinding (SFG) treatment on grape pomace. The results showed that the HHP treatment improved physicochemical and antioxidant properties of grape pomace than the SFG treatment did. Moreover, the results of SEM indicated that the HHP‐treated grape pomace turned to have more lamellar structure, resulting in more hydrophilic groups exposed to improve WRC, WSC and SDF content. The results of FT‐IR spectra indicated that the main components and chemical structure of grape pomace after processing did not significantly change. Therefore, the HHP treatment had better effect in improving the functionality of grape pomace than that of the SFG treatment. The grape pomace treated by the appropriate processing methods could be used as functional foods.
Ultraviolet (UV) irradiation has been related to the extension shelf-life and maintenance of postharvest quality in fruits. However, the comparison of UV-B and UV-C treatment on the biosynthesis of phenolic compounds of grape remain unclear. This study provides a comparison on the mechanism of phenolic secondary metabolism at the same dose of 3.6 kJ m UV treatment. Total phenolic compounds, total flavonoid, total flavanol, and total anthocyanin content and antioxidant activities of grapes after UV-C treatments were higher than those of the control and UV-B treatment. Among the evaluated parameters of individual phenolic compounds, the content of -resveratrol showed the highest percentage increase after the UV application. The transcriptions of, ,, , and were higher in grapes treated by UV-C than in those treated by UV-B. The, , and genes were more induced in UV-B treatment than in control group. The same applied dose of UV-B or UV-C irradiation have different impact on gene expression and phenolic metabolites synthesis. The UV-C irradiation stimulated a higher gene expression of the phenolic compounds biosynthesis and also induced a greater accumulation of these metabolites at the same applied dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.