The optical properties of silicon nanowire arrays (SiNWs) are closely related to surface morphology due to quantum effects and quantum confinement effects of the existing semiconductor nanocrystal. In order to explore the influence of the diameters and distribution density of nanowires on the light absorption in the visible to near infrared band, we report the highly efficient method of multiple replication of versatile homogeneous Au films from porous anodic aluminum oxide (AAO) membranes by ion sputtering as etching catalysts; the monocrystalline silicon is etched along the growth templates in a fixed proportion chemical solution to form homogeneous ordered arrays of different morphology and distributions on the surface. In this system, we demonstrate that the synthesized nanostructure arrays can be tuned to exhibit different optical characteristics in the test wavelength range by adjusting the structural parameters of AAO membranes.
We demonstrate two distinct experimental processes involving the large-area growth of ordered and disordered silicon nanowire arrays (SiNWs) on a p-type silicon substrate using the metal-assisted chemical etching method. The two processes are based on the etching of monocrystalline silicon wafers by randomly distributed Ag films and ultra-thin Au films with ordered nano-mesh arrays, respectively, wherein the growth of SiNWs is implemented using a specific proportion of a HF-containing solution at room temperature. In this study, the microstructural change mechanisms for the two morphologically different arrays before and after annealing were investigated using Raman spectra. The effects of various mechanisms on the observed Raman scattering peak’s deviation from symmetry, redshift and broadening were analyzed. The evolution of the unstable amorphous structures of nanoscale materials during the high-temperature annealing process was observed via high-resolution scanning electron microscope (SEM) observations. The scattering peak parameters determined from the Raman spectra led to conclusions concerning the various mechanisms by which high-temperature annealing influences the microstructures of the two morphologically different SiNWs fabricated on the p-type silicon substrate. Therefore, the deviation of SiNWs from the monocrystalline silicon scattering peak at 520.05 cm−1 when changing the diameter of the nanowire columns was calculated to further analyze the effect of thermal annealing on Raman characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.