Recent studies have shown promising results on joint learning of local feature detectors and descriptors. To address the lack of ground-truth keypoint supervision, previous methods mainly inject appropriate knowledge about keypoint attributes into the network to facilitate model learning. In this paper, inspired by traditional corner detectors, we develop an end-to-end deep network, named Deep Corner, which adds a local similarity-based keypoint measure into a plain convolutional network. Deep Corner enables finding reliable keypoints and thus benefits the learning of the distinctive descriptors. Moreover, to improve keypoint localization, we first study previous multi-level keypoint detection strategies and then develop a multi-level U-Net architecture, where the similarity of features at multiple levels can be exploited effectively. Finally, to improve the invariance of descriptors, we propose a feature self-transformation operation, which transforms the learned features adaptively according to the specific local information. The experimental results on several tasks and comprehensive ablation studies demonstrate the effectiveness of our method and the involved components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.