The grand challenge in the development of atomically dispersed metallic catalysts is their low metal-atom loading density, uncontrollable localization and ambiguous interactions with supports, posing difficulty in maximizing their catalytic performance. Here, we achieve an interface catalyst consisting of atomic cobalt array covalently bound to distorted 1T MoS2 nanosheets (SA Co-D 1T MoS2). The phase of MoS2 transforming from 2H to D-1T, induced by strain from lattice mismatch and formation of Co-S covalent bond between Co and MoS2 during the assembly, is found to be essential to form the highly active single-atom array catalyst. SA Co-D 1T MoS2 achieves Pt-like activity toward HER and high long-term stability. Active-site blocking experiment together with density functional theory (DFT) calculations reveal that the superior catalytic behaviour is associated with an ensemble effect via the synergy of Co adatom and S of the D-1T MoS2 support by tuning hydrogen binding mode at the interface.
Two poly(vinylidene fluoride)(PVDF)/carbon nanotube (CNT) composites are prepared by solution sonication and mechanical mixture approaches. It is found that α-phase coexists with β-phase in the composite prepared by sonicating the PVDF/CNT mixture solution, while no β-phase can be observed in the composite prepared from the mechanical mixture route. With the help of the density functional theory calculations, it is explained that a large amount of energy is required for transforming trans−gauche−trans−gauche′ (TGTG′) into trans−trans (TT) conformations and the TT molecular chain can be bound on the CNT surface tightly. The emergence of β-phases is independent of zigzag carbon atoms on the CNT surface. The formation mechanism of β-phase is proposed based on the theoretical calculations and experimental results.
HIGHLIGHTS• Single-atom Co-MoS 2 (SA Co-MoS 2 ) is prepared successfully to serve as a proof-of-concept nanozyme model, which exhibits peroxidase-like performance comparable to that of natural enzymes.• The different mechanisms between the single-atom metal center and the support are investigated experimentally and theoretically.ABSTRACT The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS 2 (SA Co-MoS 2 ) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS 2 , its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS 2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS 2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS 2 . The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.
Carbon nanotubes, carbon nanocones, and graphene nanoribbons are carbon-based nanomaterials, and their electronic and field emission properties can be altered by either electron donors or electron acceptors. Among both donors and accepters, nitrogen and boron atoms are typical substitutional dopants for carbon materials. The contribution of this paper mainly provides a comprehensive overview of the theoretical topics. The effect of nitrogen/boron doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons is reviewed. It is also suggested that nitrogen is more an n-type donor. The discussion about the mechanism of field emission for N-doped carbon nanotubes and electronic structures of N-doped graphene nanoribbons is interesting and timely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.