Colorectal cancer (CRC) is one of the most common cancers of the digestive tract, and patients with advanced-stage cancer have poor survival despite the use of multidrug conventional chemotherapy regimens. Intra-tumor heterogeneity of cancerous cells is the main obstacle in the way to effective cancer treatments. Therefore, we are looking for novel approaches to eliminate just cancer cells including nanoparticles (NPs). PPy@Fe3O4 NPs were successfully synthesized through a portable method. The characterization of transmission electron microscopy (TEM), Fourier-Transformed infrared spectrometer, and X-ray powder diffraction have further proved successful preparation of PPy@Fe3O4 NPs. NIR irradiation was used to test the photothermal properties of NPs and an infrared camera was used to record their temperature. The direct effects of PPy@Fe3O4 NPs on colorectal cancer cell DLD1 were assessed using CCK8, plate clone, transwell, flow cytometry, and western blotting in CRC cell. The effect of PPy@Fe3O4 NPs on neoplasm growth in nude mice was evaluated in vivo. This study demonstrated that PPy@ Fe3O4 NPs significantly inhibit the growth, migration, and invasion and promote ferroptosis to the untreated controls in colorectal cancer cells. Mechanical exploration revealed that PPy@Fe3O4 NPs inhibit the multiplication, migration, and invasion of CRC cells in vitro by modulating the NF-κB signaling pathway. Importantly, Ferroptosis inhibitors Fer-1 can reverse the changes in metastasis-associated proteins caused by NPs treatment. Collectively, our observations revealed that PPy@Fe3O4 NPs were blockers of tumor progression and metastasis in CRC. This study brought new insights into bioactive NPs, with application potential in curing CRC or other human disorders.
Background As digital medicine has exerted profound influences upon diagnosis and treatment of hepatobiliary diseases, our study aims to investigate the accuracy of three-dimensional visualization and evaluation (3DVE) system in assessing the resectability of hilar cholangiocarcinoma (hCCA), and explores its potential clinical value. Materials and methods The discovery cohort, containing 111 patients from April 2013 to December 2019, was retrospectively included to determine resectability according to revised criteria for unresectability of hCCA. 3D visualization models were reconstructed to evaluate resectability parameters including biliary infiltration, vascular involvement, hepatic atrophy and metastasis. Evaluation accuracy were compared between contrast-enhanced CT and 3DVE. Logistic analysis was performed to identify independent risk factors of R0 resection. A new comprehensive 3DVE classification of hCCA based on factors influencing resectability was proposed to investigate its role in predicting R0 resection and prognosis. The main outcomes were also analyzed in cohort validation, including 34 patients from January 2020 to August 2022. Results 3DVE showed an accuracy rate of 91% (95%CI 83.6–95.4%) in preoperatively evaluating hCCA resectability, significantly higher than 81% (95%CI 72.8–87.7%) of that of CT (p = 0.03). By multivariable analysis, hepatic artery involvement in 3DVE was identified an independent risk factor for R1 or R2 resection (OR = 3.5, 95%CI 1.4,8.8, P < 0.01). New 3DVE hCCA classification was valuable in predicting patients’ R0 resection rate (p < 0.001) and prognosis (p < 0.0001). The main outcomes were internally validated. Conclusions 3DVE exhibited a better efficacy in evaluating hCCA resectability, compared with contrast-enhanced CT. Preoperative 3DVE demonstrated hepatic artery involvement was an independent risk factor for the absence of R0 margin. 3DVE classification of hCCA was valuable in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.