The central projections of the rat sciatic, saphenous, median, and ulnar nerves were labeled by injecting each nerve with 0.05 mg B-HRP, or 0.5 mg WGA-HRP, or a mixture of both. The B-HRP labeled large dorsal root ganglion cells (30-50 microns) and, correspondingly, 98% of axons labeled in a rootlet were meyelinated; although all sizes of myelinated axons were labeled, a greater proportion fell in the large ranges (2-6.5 microns axon diameter) than in the small ranges (0.5-2 microns). Primary afferents labeled with B-HRP were distributed in laminae I, III, IV, and V of the dorsal horn and extended into the intermediate grey and the ventral horn; Clarke's column and the respective dorsal column nuclei were also densely labeled. Motoneurons of the nerve were densely labeled by B-HRP, including extensive regions of their dendritic trees. In contrast, WGA-HRP labeled small dorsal root ganglion cells (15-25 microns) and in the dorsal rootlets, 84% of the labeled axons were nonmyelinated; the small population of labeled myelinated afferents mainly fell within the smaller ranges (0.5-2.0 microns). Terminal fields of WGA-HRP labeled afferents were restricted to the superficial dorsal horn (laminae I-III), and to limited regions in the dorsal column nuclei. Sciatic nerve projections traced by labeling with B-HRP alone or in combination with WGA-HRP were more extensive than previously described when using either native HRP or WGA-HRP. Afferents to the dorsal horn extended from L1-S1, to Clarke's nucleus from T8-L1, to the ventral horn from L2-L5, and extended throughout the medial and dorsal region of the gracilie nucleus. Motoneurons were found from L4-L6. Using the same tracers, saphenous projections extended in the superficial dorsal horn from caudal L1 to rostral L4, in the deep dorsal horn to mid L4 and along the length of the central part of the gracilie nucleus. The median nerve projected to the internal basilar nucleus from C1-C6, the dorsal horn from C3-T2, Clarke's nucleus from T1-T6, the external cuneate nucleus, and a large central area throughout the length of the cuneate nucleus. Motoneurons were located in dorsolateral and ventrolateral nuclear groups from C4 through C8. The ulnar nerve projections were less extensive but also included the internal basilar nucleus from C1-C6, the medial region of the dorsal horn from C4-T1, Clarke's nucleus from T1-T6, the external cuneate nucleus, and the medial part of the cuneate nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
The neuropeptide calcitonin gene-related peptide (CGRP) is concentrated in fine sensory nerve endings innervating all tissues, including bone. CGRP inhibits osteoclasts, stimulates insulin-like growth factor I and inhibits tumor necrosis factor alpha production by osteoblasts in vitro. To investigate the role of CGRP in bone in vivo, mice were engineered to express CGRP in osteoblasts by placing the human CGRP gene under the control of the rat osteocalcin promoter (Ost-CGRP tg+ mice). Calvaria cultures from transgene positive (tg+), but not tg− mice, produced bioactive CGRP. Trabecular bone density and bone volume, determined by peripheral quantitative computed tomography and bone histomorphometry, respectively, were higher in tg+ than tg− littermates. This increase in bone volume was associated with an increased bone formation rate. Trabecular bone density decreased in tg+ mice as a result of ovariectomy, but remained higher than in sham tg− mice. Targeting CGRP to osteoblasts appears to favor the establishment of a higher trabecular bone mass in
We have examined the effect of the degeneration of sciatic nerve afferents on the distribution of saphenous terminals in the adult rat dorsal horn. Deafferentation was produced by injection into the sciatic nerve of pronase, a combination of proteolytic enzymes, which causes death of ganglion cells and degeneration of their terminal fields. The saphenous terminal fields were labelled by exposing the cut nerve to a combination of horseradish peroxidase (HRP) and wheat germ agglutinin-horseradish peroxidase (WGA-HRP). Terminals were mainly found in the superficial dorsal horn, indicating that small-diameter afferents were heavily labelled. In one group of control animals, the normal sciatic and normal saphenous terminal fields were shown to be bilaterally symmetrical. In the experimental group, the initial injection of one sciatic nerve with pronase was followed 4 months later by bilateral HRP/WGA-HRP labelling of both saphenous nerves. In each animal, the terminal field of the saphenous nerve on the lesioned side was expanded in the medial, lateral, and caudal directions. Medially and laterally, the expanded terminal field overlapped more of the sciatic territory than normal; caudally, saphenous terminals were found in the rostral portion of the L5 segment, in an area normally filled by sciatic terminals and devoid of saphenous terminals. The expansion resulted in a total saphenous area 26% larger than the control side. Electron microscopy demonstrated that the label in both the normal and expanded territories was primarily contained in axons and terminals, with minor transneuronal labelling. Labelled terminals in the expanded areas were both simple terminals with round, clear vesicles, and glomerular terminals with multiple synaptic contacts; these terminal types resemble those previously described for primary afferents in the superficial dorsal horn. Although the preexistence of "silent" synaptic terminals in the expanded areas cannot be disproven, the data support the hypothesis that primary afferents in the adult have the potential to sprout and establish synapses when the conditions of the deafferentation are favorable.
Light microscopical degeneration and ultrastructural alterations in the rat spinal dorsal horn were studied following either cutting of the sciatic nerve or rhizotomy at L4 and L5; survival time for both procedures was 3 weeks. Fink-Heimer silver methods showed minimal degeneration of afferent central processes after sciatic section, and limited ultrastructural changes were present. Both rhizotomy and nerve section resulted in degenerating terminals. Most were swollen and electron lucent, with loss of vesicles; some electron-dense terminals were present, particularly after rhizotomy. Both procedures also produced significant degeneration of postsynaptic dendrites and soma, evidenced by either increases in electron density, or loss of organelles and cavitation, or accumulation of osmiophilic floccular material. Glial processes frequently were expanded and extended to engulf single degenerating terminals and dendrites, or terminal-dendrite units; in other cases glial tongues separated terminals from their postsynaptic dendrite. Glial processes often wrapped around degenerating profiles or groups of profiles in several layers, sometimes forming complex labyrinths. These results confirm past descriptions of pre- and postsynaptic changes resulting from peripheral nerve section, but newly reveal that dendritic destruction and increased glial activity are also significant following rhizotomy. Documentation of these changes is relevant for studies of reorganization following nerve and spinal cord damage, as well as providing an ultrastructural basis for evaluation of effects of neurotoxins that affect primary afferents, as described in a companion paper.
We have previously demonstrated sprouting of small diameter saphenous afferents, labelled with wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) and (HRP), into the sciatic territory of the adult rat superficial dorsal horn following destruction of sciatic afferents by injection of the sciatic nerve with pronase (a combination of proteolytic enzymes). In the present experiments, we examined the response of myelinated saphenous axons, which terminate in lamina I and the deep dorsal horn (laminae III-V) under the same conditions, with the tracer B subunit of cholera toxin conjugated to HRP (B-HRP) which specifically labels myelinated primary afferents when injected into a peripheral somatic nerve. We also examined changes in the nucleus gracilis, another site of sciatic degeneration and a target of saphenous afferents. Four months after injection of the pronase, the area of label determined by measurement of the width of the saphenous territory in lamina III was expanded by 24% on the pronase side. Since there was also expansion throughout the deep dorsal horn, the area measured by tracing the labelled region in transverse sections was actually twice that of the control side, and the intensity of labelling within the traced area increased by 18%. There was no change in grey matter area due to the lesion. The traced area of labelling in the nucleus gracilis increased by 40%, and increased in intensity by 17%. The substantia gelatinosa is not normally supplied by B-HRP-labelled afferents, and there was no expansion of these sprouted saphenous afferents into the gelatinosa. These results indicate that myelinated afferents can sprout as vigorously in lamina I and the deep dorsal horn as the small diameter afferents do in the substantia gelatinosa; that there is no invasion of the substantia gelatinosa by the myelinated afferents at least as long as the small diameter afferents also have the opportunity to sprout; and that primary afferents have the potential to sprout at more than one site of termination, i.e., both the dorsal horn and the dorsal column nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.