Measuring productivity is the systematic process for both inter- and intra-organizational comparisons. The productivity measurement can be used to control and facilitate decision-making in manufacturing as well as service organizations. This study’s objective was to develop a decision support framework by integrating an analytic network process (ANP) and data envelopment analysis (DEA) approach to tackling productivity measurement and benchmarking problems in a manufacturing environment. The ANP was used to capture the interdependency between the criteria taking into consideration the ambiguity and vagueness. The nonparametric DEA approach was utilized to determine the input-oriented constant returns to scale (CRS) efficiency of different value-adding production units and to benchmark them. The proposed framework was implemented to benchmark the productivity of an apparel manufacturing company. By applying the model, industrial managers can gain benefits by identifying the possible contributing factors that play an important role in increasing the productivity of manufacturing organizations.
Co-hydrothermal carbonization (Co-HTC) is an emerging technology for processing multiple waste streams together to improve their fuel properties in the solid product, known as hydrochar, compared to the hydrothermal carbonization (HTC) of those individual streams. Sulfur is considered one of the most toxic contaminants in solid fuel and the combustion of this sulfur results in the emission of SOx. It was reported in the literature that, besides the fuel properties, Co-HTC reduced the total sulfur content in the hydrochar phase significantly. However, the transformation of different forms of sulfur has not yet been studied. Therefore, this study investigated the transformation of different forms of sulfur under the Co-HTC treatment. In the study, the Co-HTC of food waste (FW) and two types of coal wastes (middle bottom (CW1) and 4 top (CW2)) were conducted at 180 °C, 230 °C and 280 °C for 30 min. Different forms of sulfur were measured by using elemental analysis (total sulfur), and a wet chemical method (sulfate sulfur and pyritic sulfur). The organic sulfur was measured by the difference method. The results showed that a maximum of 49% and 65% decrease in total sulfur was achieved for CW1FW and CW2FW, respectively, at 230 °C. Similar to the total sulfur, the organic sulfur was also decreased about 85% and 75% for CW1FW and CW2FW, respectively. Based on these results, a sulfur transformation mechanism under Co-HTC treatment was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.