In this paper, we propose a general model for the soybean export market share dynamics and provide several theoretical analyses related to a special case of the general model. We implement machine and neural network algorithms to train, analyze, and predict US Gulf soybean market shares (target variable) to China using weekly time series data consisting of several features between January 6, 2012 and January 3, 2020. Overall, the results indicate that US Gulf soybean market shares to China are volatile and can be effectively explained (predicted) using a set of logical input variables. Some of the variables, including shipments due at US Gulf port in 10 days, cost of transporting soybean shipments via barge at Mid-Mississippi, and soybean exports loaded at US Gulf port in the past 7 days, and binary variables have shown significant influence in predicting soybean market shares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.