DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b -/-lymphomas, but not in Dnmt3b -/-pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b -/-lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b +/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by an accumulation of neoplastic B cells due to their resistance to apoptosis and increased survival. Among various factors, the tumor microenvironment is known to play a role in the regulation of cell proliferation and survival of many cancers. However, it remains unclear how the tumor microenvironment contributes to the increased survival of B-CLL cells. Therefore, we studied the influence of bone marrow stromal cell -induced hedgehog (Hh) signaling on the survival of B-CLL cells. Our results show that a Hh signaling inhibitor, cyclopamine, inhibits bone marrow stromal cell -induced survival of B-CLL cells, suggesting a role for Hh signaling in the survival of B-CLL cells. Furthermore, gene expression profiling of primary B-CLL cells (n = 48) indicates that the expression of Hh signaling molecules, such as GLI1, GLI2, SUFU, and BCL2, is significantly increased and correlates with disease progression of B-CLL patients with clinical outcome. In addition, SUFU and GLI1 transcripts, as determined by real-time PCR, are significantly overexpressed and correlate with adverse indicators of clinical outcome in B-CLL patients, such as cytogenetics or CD38 expression. Furthermore, selective downregulation of GLI1 by antisense oligodeoxynucleotides (GLI1-ASO) results in decreased BCL2 expression and cell survival, suggesting that GLI1 may regulate BCL2 and, thereby, modulate cell survival in B-CLL. In addition, there was significantly increased apoptosis of B-CLL cells when cultured in the presence of GLI1-ASO and fludarabine. Together, these results reveal that Hh signaling is important in the pathogenesis of B-CLL and, hence, may be a potential therapeutic target.
Summary:Forty-one patients were studied at set times after allogeneic blood stem cell transplantation (alloBSCT) for recovery of lymphocyte numbers and function. Cells were mobilized with G-CSF from HLA-matched related donors and cryopreserved. Graft-versus-host disease (GVHD) prophylaxis consisted of cyclosporine and methotrexate; G-CSF was administered post-transplant. Median time to absolute lymphocyte count (ALC) у500/l was 17 days vs 41 and 49 days in historical alloBMT patients with G-CSF (n = 23) or no cytokine (n = 29) post-transplant, respectively (P Ͻ 0.0001).
CD4/CD8+ ratio was 1.9 on day 28 after alloBSCT, then gradually declined to 0.8 at 1 year due to more rapid CD8 + cell recovery. Mean phytohemagglutinin-induced T cell responses were lower than normal on day +28 (P Ͻ 0.05), then tended to recover towards normal values. Natural-killer cytotoxicity remained low from day +28 to 1 year post-alloBSCT, but considerable lymphokineactivated killer cytotoxicity was induced from cells already obtained on day +28. Faster lymphocyte recovery correlated with better survival in alloBSCT patients (median follow-up 287 days, P = 0.002), ALC recovery was not affected by acute GVHD, CMV infections or doses of infused cells. ALC recovery did not correlate with survival in either historical alloBMT group. These data suggest that after alloBSCT lymphocyte reconstitution is faster than after alloBMT, and that quicker lymphocyte recovery predicts better survival in the alloBSCT setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.