Background COVID-19 has spread rapidly around the world, affecting a large percentage of the population. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. Methods We tried to develop a one-tube detection platform based on RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR) technology, termed OR-DETECTR, to detect SARS-CoV-2. We designed RT-RPA primers of the RdRp and N genes following the SARS-CoV-2 gene sequence. We optimized reaction components so that the detection process could be carried out in one tube. Specificity was demonstrated by detecting nucleic acid samples from pseudoviruses from seven human coronaviruses and Influenza A (H1N1). Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards and pseudoviruses diluted by different gradients were used to demonstrate the detection limit. Additionally, we have developed a lateral flow assay based on OR-DETECTR for detecting COVID-19. Results The OR-DETECTR detection process can be completed in one tube, which takes approximately 50 min. This method can specifically detect SARS-CoV-2 from seven human coronaviruses and Influenza A (H1N1), with a low detection limit of 2.5 copies/µl input (RNA standard) and 1 copy/µl input (pseudovirus). Results of six samples from SARS-CoV-2 patients, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. The lateral flow assay based on OR-DETECTR can be used for the detection of COVID-19, and the detection limit is 2.5 copies/µl input. Conclusions The OR-DETECTR platform for the detection of COVID-19 is rapid, accurate, tube closed, easy-to-operate, and free of large instruments.
Enhancers are cis-acting elements that can promote the expression of target genes and respond to estrogen to induce the transcription of eRNAs, which are closely associated with cancer development. Further study on eRNAs may lead to a better understanding of the significance of transcriptional regulation and the progression of malignant tumors. SMAD7 enhancer RNA (SMAD7e) is an estrogen-responsive eRNA. However, the relationship between SMAD7e and bladder cancer remains unclear. SMAD7e was significantly upregulated in bladder cancer tissues and estrogen-stimulated cells. Knockdown of SMAD7e by CRISPR-Cas13a suppressed cell proliferation and migration, and induced cell apoptosis and inhibited cell invasion. Estrogen caused overexpression of SMAD7e and played a facilitating role in bladder cancer cells. Furthermore, knockdown of SMAD7e by CRISPR-Cas13a prevented the cancer-promoting effects of estrogen on bladder cancer both in vitro and in vivo . The present study suggested the crucial role of SMAD7e in bladder cancer. Estrogen might promote the development of bladder cancer by inducing SMAD7e production. These findings may provide a potential target for CRISPR-mediated gene therapy for bladder cancer in the future.
Hepatocellular carcinoma (HCC) is among the major causes of cancer-related mortalities globally. Long non-coding RNAs (LncRNAs), as epigenetic molecules, contribute to malignant tumor incidences and development, including HCC. Although LncRNA SNHG9 is considered an oncogene in many cancers, the biological function and molecular mechanism of SNHG9 in HCC are still unclear. We investigated the effects of lncRNA SNHG9 on the methylation of glutathione S-transferase P1 (GSTP1) and the progression of HCC. Histological data analysis, CRISPR-dCas9, and cytological function experiment were used to study the expression level and biological function of SNHG9 in HCC. There was an upregulated expression of SNHG9 in HCC, which was associated with shorter disease-free survival. Knockdown of SNHG9 can inhibit cell proliferation, block cell cycle progression, and inhibit cell migration and invasion by upregulating GSTP1. LncRNA SNHG9 recruits methylated enzymes (DNMT1, DNMT3A, and DNMT3B) to increase GSTP1 promoter methylation, a common event in the development of HCC. Inhibition of lncRNA SNHG9 demethylates GSTP1, which prevents HCC progression, presents a promising therapeutic approach for HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.