The industrial growth has escalated the use of induction motors as prime movers in modern industry. This is due to its low cost, simple construction and ruggedness. Although rugged, these may fail earlier than expected life due to, excessive mechanical, electrical and environmental stresses. Automatic Artificial Intelligence (AI)-based systems are nowadays widely employed in the domain of induction motor fault identification with high success rate. Artificial neural network are utilized extensively for the detection and diagnosis of various induction motor faults. These systems generally use supervised learning, where the models are pre-trained such that these are skilled enough to classify the absence or presence of faults in motor under investigation. In this paper, a highly effective approach for detection of different motor fault conditions, based on pattern recognition technique is presented. In the proposed method the statistical time domain features are computed from three phase motor current and used as inputs of ANN. Seven different classes of motor conditions: healthy, broken rotor bar, broken rotor bar with stator winding short circuit and inner and outer race bearing defects were considered. The results indicates that the proposed methodology is highly effective for diagnosis of various induction motor faults with high success rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.