Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the overall biological roles and clinical significance of most lncRNAs in gastric carcinogenesis are not fully understood. We investigated the clinical significance, biological function, and mechanism of LINC01234 in gastric cancer. First, we analyzed LINC01234 alterations in gastric cancerous and noncancerous tissues through an analysis of sequencing data obtained from The Cancer Genome Atlas. Next, we evaluated the effect of LINC01234 on the gastric cancer cell proliferation and apoptosis, and its regulation of miR-204-5p by acting as a competing endogenous RNA (ceRNA). The animal model was used to support the experimental findings. We found that LINC01234 expression was significantly upregulated in gastric cancer tissues and was associated with larger tumor size, advanced TNM stage, lymph node metastasis, and shorter survival time. Furthermore, knockdown of LINC01234-induced apoptosis and growth arrest and inhibited tumorigenesis in mouse xenografts. Mechanistic investigations indicated that LINC01234 functioned as a ceRNA for miR-204-5p, thereby leading to the derepression of its endogenous target core-binding factor β (CBFB). LINC01234 is significantly overexpressed in gastric cancer, and LINC01234-miR-204-5p-CBFB axis plays a critical role in gastric cancer tumorigenesis. Our findings may provide a potential new target for gastric cancer diagnosis and therapy. .
Mounting evidence demonstrates that long non-coding RNAs (lncRNAs) are novel transcripts governing multiple biological processes, and their dysregulation is involved in the development and progression of multiple types of cancers. Small Nucleolar RNA Host Gene 20 (SNHG20) is a 2183 bp lncRNA, and its overexpression predicts poor prognosis in colorectal cancer and hepatocellular carcinoma. However, the clinical relevance of SNHG20 and its molecular mechanisms affecting cancer cell phenotype have not been documented. Here, we found that SNHG20 was upregulated in non-small cell lung cancer (NSCLC) tissues compared with normal samples. Higher SNHG20 expression was significantly associated with advanced tumor, lymph node and metastases (TNM) stage and tumor size, as well as poorer overall survival. Moreover, knockdown of SNHG20 repressed NSCLC cell proliferation, migration and induced cell apoptosis. Mechanistic investigations revealed that SNHG20 could interact with EZH2 (enhancer of zeste homolog 2), thereby repressing P21 expression. Furthermore, rescue experiments indicated that SNHG20 functioned as an oncogene partly via repressing p21 in NSCLC cells. Taken together, our findings demonstrate that SNHG20 is a new candidate for use in NSCLC diagnosis, prognosis and therapy.
Lung cancer is the most common cancer all around the world, with high morbidity and mortality. Long noncoding RNA (lncRNA) has been reported to have a critical role in non-small-cell lung cancer (NSCLC) proliferation and migration. In the present study, we analyzed The Cancer Genome Atlas (TCGA) data, and we found that lncRNA Small Nucleolar RNA Host Gene 17 (SNHG17) was upregulated in NSCLC driven by the amplification of copy number, indicating the special role of SNHG17 in NSCLC. The full exact length of SNHG17 was determined by rapid amplification of cDNA ends (RACE). We modulated SNHG17 expression by RNAi and a series of functional assays were performed. Flow cytometry was used to explore the involvement of SNHG17 in NSCLC cell apoptosis. Results showed that the knockdown of SNHG17 inhibited the proliferation and migration and promoted the apoptosis of NSCLC cells. We acquired the global gene expression profile regulated by SNHG17 in A549 through RNA sequencing (RNA-seq) assays. We found 637 genes were upregulated while 581 genes were downregulated. We selected three genes (FOXA1, XAF1, and BIK) that were closely related to proliferation and apoptosis, and we confirmed their altered expression in A549 and PC-9 cells treated with small interfering RNA si-SNHG17. Our findings indicated gene amplification-driven lncRNA SNHG17 promotes cell proliferation and migration in NSCLC, suggesting its potential value as a biomarker in NSCLC.
The number of documented long noncoding RNAs (lncRNAs) has dramatically increased, and their biological functions and underlying mechanisms in pathological processes, especially cancer, remain to be elucidated. Actin filament‐associated protein 1 antisense RNA 1 (AFAP1‐AS1) is a 6810‐nt lncRNA located on chromosome 4p16.1 that was first reported to be upregulated in esophageal adenocarcinoma tissues and cell lines. Here we reported that AFAP1‐AS1, recruiting and binding to lysine‐specific demethylase 1 (LSD1), was generally overexpressed in human non‐small‐cell lung cancer (NSCLC) tissues using quantitative real‐time PCR. Higher AFAP1‐AS1 expression was significantly correlated with larger tumor size (P = .008), lymph node metastasis (P = .025), higher TNM stage (P = .024), and worse overall survival in NSCLC patients. In vitro experiments revealed that AFAP1‐AS1 downregulation inhibited cell migration and induced apoptosis; AFAP1‐AS1 knockdown also hindered tumorigenesis in vivo. Moreover, mechanistic investigations including RNA immunoprecipitation and ChIP assays validated that AFAP1‐AS1 repressed HMG box‐containing protein 1 (HBP1) expression by recruiting LSD1 to the HBP1 promoter regions in PC‐9 and H1975 cells. Furthermore, HBP1 functions as a tumor suppressor, and its ectopic expression hindered cell proliferation. Rescue assays determined that the oncogenic effect of AFAP1‐AS1 is partially dependent on the epigenetic silencing of HBP1. In conclusion, our results indicate that AFAP1‐AS1 is carcinogenic and that the AFAP1‐AS1/LSD1/HBP1 axis could constitute a new therapeutic direction for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.