Studies of galaxy surveys in the context of the cold dark matter paradigm have shown that the mass of the dark matter halo and the total stellar mass are coupled through a function that varies smoothly with mass. Their average ratio M/M has a minimum of about 30 for galaxies with stellar masses near that of the Milky Way (approximately 5 × 10 solar masses) and increases both towards lower masses and towards higher masses. The scatter in this relation is not well known; it is generally thought to be less than a factor of two for massive galaxies but much larger for dwarf galaxies. Here we report the radial velocities of ten luminous globular-cluster-like objects in the ultra-diffuse galaxy NGC1052-DF2, which has a stellar mass of approximately 2 × 10 solar masses. We infer that its velocity dispersion is less than 10.5 kilometres per second with 90 per cent confidence, and we determine from this that its total mass within a radius of 7.6 kiloparsecs is less than 3.4 × 10 solar masses. This implies that the ratio M/M is of order unity (and consistent with zero), a factor of at least 400 lower than expected. NGC1052-DF2 demonstrates that dark matter is not always coupled with baryonic matter on galactic scales.
The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4 closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of D 19.9 2.8 Mpc sbf = ; and also has a population of luminous globular clusters extending out to 7 kpc from the center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were obtained with the Low Resolution Imaging Spectrograph on the Keck I telescope. The velocity of the diffuse light is identical to the median velocity of the clusters, v v 1445 km s halo 1 s~-). We conclude that NGC1052-DF2 is not an isolated case but that a class of such objects exists. The origin of these large, faint galaxies with an excess of luminous globular clusters and an apparent lack of dark matter is, at present, not understood.
We present the unexpected discovery of four ultra diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10 − 38 and central surface brightnesses of 25.6 − 27.7 mag arcsec −2 in g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST /ACS, which implies distances of D > 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ∼ 27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6 − 4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.
We recently found an ultra diffuse galaxy (UDG) with a half-light radius of R e =2.2 kpc and little or no dark matter. The total mass of NGC1052-DF2 was measured from the radial velocities of bright compact objects that are associated with the galaxy. Here, we analyze these objects using a combination of Hubble Space Telescope (HST) imaging and Keck spectroscopy. Their average size is r 6.2 0.5 h á ñ = pc and their average ellipticity is 0.18 0.02From a stacked Keck spectrum we derive an age of 9 Gyr and a metallicity of [Fe/H]=−1.35±0.12. Their properties are similar to ω Centauri, the brightest and largest globular cluster in the Milky Way, and our results demonstrate that the luminosity function of metal-poor globular clusters is not universal. The fraction of the total stellar mass that is in the globular cluster system is similar to that in other UDGs, and consistent with "failed galaxy" scenarios, where star formation terminated shortly after the clusters were formed. However, the galaxy is a factor of ∼1000 removed from the relation between globular cluster mass and total galaxy mass that has been found for other galaxies, including other UDGs. We infer that a dark matter halo is not a prerequisite for the formation of metal-poor globular cluster-like objects in high-redshift galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.