Vermetid reefs and rocky shores are hot spots of biodiversity, often referred to as the subtropical equivalent of coral reefs. The development of the ecosystem depends on the activity of several reef builders, including red crustose coralline algae (CCA) such as Neogoniolithon brassica‐florida. Despite its importance, little is known about Neogoniolithon sp. acclimation to rapid changes in light intensity and corresponding photosynthetic activity. To overcome the large spatial variability in the light field (due to location and the porous nature of the rocks) we grew Neogoniolithon sp. on glass slides and characterized its photosynthetic performance in response to various light intensities by following O2 exchange and fluorescence parameters. This was also performed on rock‐inhabiting thalli collected from the east Mediterranean basin. Generally, maximal photosynthetic rate was reached when Neogoniolithon sp. thalli grown under low illumination (such as in protected niches where the light intensity can be as low as 1% of surface illumination) were examined. When exposed to light intensities higher than those experienced during growth, Neogoniolithon sp. activates adaptive/protective mechanisms such as state transition and nonphotochemical fluorescence quenching and increases the dark respiration thereafter. We find that the Fv/Fm parameter (variable/maximal fluorescence) is not suitable to assess photosynthetic performance in Neogoniolithon sp. and propose using instead an alternative parameter recently developed. Our findings help to clarify why Neogoniolithon sp. is usually observed in shaded niches along the reef surfaces.
The development of coastal vermetid reefs and rocky shores depends on the activity of several reef builders, including red crustose coralline algae (CCA) such as Neogoniolithon sp. To initiate studies on the interaction between Neogoniolithon sp. and its associated bacteria, and their impact on the algae physiological performance, we characterized the bacterial community by 16S rRNA gene sequencing. These were extracted from the algal tissue and adjacent waters along two sampling campaigns (during winter and spring), in three study regions along a reef in the east Mediterranean Israeli coast and from laboratory-grown algae. The analysis revealed that aquaria and field communities differ substantially, suggesting that future research on Neogoniolithon sp. interaction with its microbiome must rest on aquaria that closely simulate coastal conditions. Some prokaryote classes found associated with the alga tissue were hardly detected or absent from surrounding water. Further, bacterial populations differed between sampling campaigns. One example is the presence of anaerobic bacteria and archaea families in one of the campaigns, correlating with the weaker turbulence in the spring season, probably leading to the development of local anoxic conditions. A better understanding of reef-building activity of CCA and their associated bacteria is necessary for assessment of their resilience to climate change and may support coastal preservation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.