To improve prediction accuracy and provide sufficient time to control decision-making, a decomposition-based multi-step forecasting model for rabbit house environmental variables is proposed. Traditional forecasting methods for rabbit house environmental parameters perform poorly because the coupling relationship between sequences is ignored. Using the STL algorithm, the proposed model first decomposes the non-stationary time series into trend, seasonal, and residual components and then predicts separately based on the characteristics of each component. LSTM and Informer are used to predict the trend and residual components, respectively. The aforementioned two predicted values are added together with the seasonal component to obtain the final predicted value. The most important environmental variables in a rabbit house are temperature, humidity, and carbon dioxide concentration. The experimental results show that the encoder and decoder input sequence lengths in the Informer model have a significant impact on the model’s performance. The rabbit house environment’s multivariate correlation time series can be effectively predicted in a multi-input and single-output mode. The temperature and humidity prediction improved significantly, but the carbon dioxide concentration did not. Because of the effective extraction of the coupling relationship among the correlated time series, the proposed model can perfectly perform multivariate multi-step prediction of non-stationary time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.