As a key component in overhead cables, insulators play an important role. However, in the process of insulator inspection, due to background interference, small fault area, limitations of manual detection, and other factors, detection is difficult, has low accuracy, and is prone to missed detection and false detection. To detect insulator defects more accurately, the insulator defect detection algorithm based on You Only Look Once version 5 (YOLOv5) is proposed. A backbone network was built with lightweight modules to reduce network computing overhead. The small-scale network detection layer was increased to improve the network for small target detection accuracy. A receptive field module was designed to replace the original spatial pyramid pooling (SPP) module so that the network can obtain feature information and improve network performance. Finally, experiments were carried out on the insulator image dataset. The experimental results show that the average accuracy of the algorithm is 97.4%, which is 7% higher than that of the original YOLOv5 network, and the detection speed is increased by 10 fps, which improves the accuracy and speed of insulator detection.
Permanent magnet synchronous motors (PMSMs) have been gradually used as the driving equipment of coal mine belt conveyors. To ensure safety and stability, it is necessary to carry out real-time and accurate fault diagnosis of PMSM. Therefore, a fault diagnosis method for PMSM based on digital twin and ISSA-RF (Improved Sparrow Search Algorithm Optimized Random Forest) is proposed. Firstly, the multi-strategy hybrid ISSA is used to solve the problems of uneven population distribution, insufficient population diversity, low convergence speed, etc. In addition, the fault diagnosis model of ISSA-RF permanent magnet synchronous motor is constructed based on the optimization of the number of Random Forest decision trees and that of features of each node by ISSA. Secondly, considering the operation mechanism and physical properties of PMSM, the relevant digital twin model is constructed and the real-time mapping of physical entity and virtual model is realized through data interactive transmission. Finally, the simulation and experimental results show that the fault diagnosis accuracy of ISSA-RF, 98.2%, is higher than those of Random Forest (RF), Sparrow Search Algorithm Optimized Random Forest (SSA-RF), BP neural network (BP) and Support Vector Machine (SVM), which verifies the feasibility and ability of the proposed method to realize fault diagnosis and 3D visual monitoring of PMSM together with the digital twin model.
Insulator devices are important for transmission lines, and defects such as insulator bursting and string loss affect the safety of transmission lines. In this study, we aim to investigate the problems of slow detection speed and low efficiency of traditional insulator defect detection algorithms, and to improve the accuracy of insulator fault identification and the convenience of daily work; therefore, we propose an insulator defect detection algorithm based on an improved MobilenetV1-YOLOv4. First, the backbone feature extraction network of YOLOv4 ‘Backbone’ is replaced with the lightweight module Mobilenet-V1. Second, the scSE attention mechanism is introduced in stages of preliminary feature extraction and enhanced feature extraction, sequentially. Finally, the depthwise separable convolution substitutes the 3 × 3 convolution of the enhanced feature extraction network to reduce the overall number of network parameters. The experimental results show that the weight of the improved algorithm is 57.9 MB, which is 62.6% less than that obtained by the MobilenetV1-YOLOv4 model; the average accuracy of insulator defect detection is improved by 0.26% and reaches 98.81%; and the detection speed reaches 190 frames per second with an increase of 37 frames per second.
To improve the positioning accuracy and reliability of autonomous navigation agricultural machinery and reduce the cost of high-precision positioning, an integrated navigation system based on Real-Time Dynamic Kinematic BeiDou Navigation Satellite System (RTK-BDS) and Inertial Navigation System (INS) is designed in this study. On the one hand, an autonomous navigation control board is designed and made in the system, which integrates BDS high-precision analysis module, Inertial Measurement Unit (IMU) module, and radio module, and realizes the integrated navigation algorithm on the control board. On the other hand, low-cost RTK technology is realized by building differential reference stations and vehicle-mounted mobile stations. Experiments are carried out on actual farm machinery under different road conditions including open road, signal-shielded road, and urban congested road. According to the angular velocity and acceleration information from INS and the position and velocity information from the BDS high-precision analysis module, the system uses Kalman filter algorithm for data fusion to calculate the precise position, velocity, and attitude information of agricultural machinery in real time. The experimental results show that the position error of the integrated navigation system on the open road is within 3 cm, the azimuth error is within 0.6°, and the inclination error is within 1°, all of which converge rapidly when encountering bad road conditions. It can be known from the experimental results that the RTK-BDS/INS integrated navigation system has high positioning accuracy, strong adaptive anti-interference ability, and low implementation cost of RTK technology, which provides a reliable way for automatic navigation control of agricultural machinery.
Nowadays, most of the deep learning coal gangue identification methods need to be performed on high-performance CPU or GPU hardware devices, which are inconvenient to use in complex underground coal mine environments due to their high power consumption, huge size, and significant heat generation. Aiming to resolve these problems, this paper proposes a coal gangue identification method based on YOLOv4-tiny and deploys it on the low-power hardware platform FPGA. First, the YOLOv4-tiny model is well trained on the computer platform, and the computation of the model is reduced through the 16-bit fixed-point quantization and the integration of a BN layer and convolution layer. Second, convolution and pooling IP kernels are designed on the FPGA platform to accelerate the computation of convolution and pooling, in which three optimization methods, including input and output channel parallelism, pipeline, and ping-pong operation, are used. Finally, the FPGA hardware system design of the whole algorithm is completed. The experimental results of the self-made coal gangue data set indicate that the precision of the algorithm proposed in this paper for coal gangue recognition on the FPGA platform are slightly lower than those of CPU and GPU, and the mAP value is 96.56%; the recognition speed of each image is 0.376 s, which is between those of CPU and GPU; the hardware power consumption of the FPGA platform is only 2.86 W; and the energy efficiency ratio is 10.42 and 3.47 times that of CPU and GPU, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.