The effects of drying temperature and air velocity on the drying characteristics, color, bioactive compounds, rehydration ratio, and microstructure of Ophiopogonis Radix during hot air impingement drying (HAID) were explored in the current study. The experimental results showed that the drying temperature and air velocity had a significant impact on the drying characteristics and quality attributes of dried products except for the rehydration ratio. The drying time decreased from 720 to 240 min with the increase of drying temperature from 50 to 70 °C. Increasing the air velocity from 6 to 12 m/s enhanced the drying process of Ophiopogonis Radix, while the extension of air velocity to 15 m/s lowered the drying rate. The samples that were dried at a lower drying temperature obtained lower color difference. Properly increasing the drying temperature or air velocity could increase the total polysaccharide and flavonoid contents of dried products. Additionally, a back-propagation neural network (BPNN) model was developed to predict the moisture ratio of Ophiopogonis Radix during the drying process. The optimal BPNN with 3-11-1 topology were obtained to predict the moisture ratio of Ophiopogonis Radix during HAID and performed with an acceptable performance.
Effects of vacuum freeze drying (VFD), air impingement drying (AID), hot air drying based on temperature and humidity control (TH-HAD), pulsed vacuum drying (PVD), and medium- and short-wave infrared radiation drying (MSIRD) on the drying characteristics and physicochemical properties of garlic slices were investigated in the current work. Based on the experimental results, the Weibull model fitted the experimental results better (R2 > 0.99) than the Wang and Singh model. Samples dried with PVD showed the smallest color difference (ΔE*), better rehydration capacity and desirable reducing sugar content. In response to thermal effects and pressure pulsations, the cell walls gradually degraded, and the cell and organelle membranes ruptured. The allicin and soluble pectin contents of garlic slices treated with PVD were higher by 8.0–252.3% and 49.5–92.2%, respectively, compared to those of the samples dried by other techniques. VFD maintained a complete garlic slice structure with the minimum shrinkage and the best appearance. The MSIRD process produced the densest structure, and caused an additional loss of color and phytochemical contents. The findings in current work implied that PVD could be a promising drying technique for garlic slices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.