Purpose Persistent fetal vasculature (PFV) is a pathological condition accounting for 4.8% of children's blindness in the United States. However, the PFV cell composition and pathogenetic mechanisms are poorly understood. This study aims to characterize PFV cell composition and associated molecular features and attempts to lay a foundation for further understanding the disease. Methods Immunohistochemistry was conducted to characterize cell types at the tissue level. Single-cell RNA sequencing (sc-RNAseq) was performed on the vitreous cells derived from normal and Fz5 mutant mice at two early postnatal ages and human PFV samples. Bioinformatic tools were used to cluster cells and analyze their molecular features and functions. Results The findings of this study are as follows: (1) a total of 10 defined and one undefined cell types were characterized in both the hyaloid vessel system and PFV by sc-RNAseq and immunohistochemistry; (2) neural crest-derived melanocytes, astrocytes, and fibroblasts were specifically retained in the mutant PFV; (3) Fz5 mutants were found to possess more vitreous cells at early postnatal age 3 but returned to similar levels as the wild type at postnatal age 6; (4) altered phagocytic and proliferation environments and cell-cell interactions were detected in the mutant vitreous; (5) the human PFV samples shared fibroblast, endothelial and macrophage cell types with the mouse, but having distinct immune cells including T cells, NK cells and Neutrophils; and last, (6) some neural crest features were also shared between certain mouse and human vitreous cell types. Conclusions We characterized PFV cell composition and associated molecular features in the Fz5 mutant mice and two human PFV samples. The excessively migrated vitreous cells, intrinsic molecular properties of these cells, phagocytic environment, and cell-cell interactions may together contribute to PFV pathogenesis. Human PFV shares certain cell types and molecular features with the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.