Vascular calcification occurs in arterial aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Transforming growth factor-β1 (TGF-β1) is a key modulator driving the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs), leading to vascular calcification. We hypothesize that milk fat globule–epidermal growth factor 8 (MFG-E8), a glycoprotein expressed in VSMCs, promotes the osteogenic transdifferentiation of VSMCs through the activation of TGF-β1-mediated signaling. We observe that the genetic deletion of MFG-E8 prevents calcium chloride-induced vascular calcification in common carotid arteries (CCAs). The exogenous application of MFG-E8 to aged CCAs promotes arterial wall calcification. MFG-E8-deficient cultured VSMCs exhibit decreased biomineralization and phenotypic transformation to osteoblast-like cells in response to osteogenic medium. MFG-E8 promotes β1 integrin–dependent MMP2 expression, causing TGF-β1 activation and subsequent VSMC osteogenic transdifferentiation and biomineralization. Thus, the established molecular link between MFG-E8 and vascular calcification suggests that MFG-E8 can be therapeutically targeted to mitigate vascular calcification.
Background
Migration of vascular smooth muscle cells (VSMCs) is the main contributor to neointimal formation. The Arp2/3 (actin‐related proteins 2 and 3) complex activates actin polymerization and is involved in lamellipodia formation during VSMC migration. Milk fat globule‐epidermal growth factor 8 (MFG‐E8) is a glycoprotein expressed in VSMCs. We hypothesized that MFG‐E8 regulates VSMC migration through modulation of Arp2/3‐mediated actin polymerization.
Methods and Results
To determine whether MFG‐E8 is essential for VSMC migration, a model of neointimal hyperplasia was induced in the common carotid artery of wild‐type and MFG‐E8 knockout mice, and the extent of neointimal formation was evaluated. Genetic deletion of MFG‐E8 in mice attenuated injury‐induced neointimal hyperplasia. Cultured VSMCs deficient in MFG‐E8 exhibited decreased cell migration. Immunofluorescence and immunoblotting revealed decreased Arp2 but not Arp3 expression in the common carotid arteries and VSMCs deficient in MFG‐E8. Exogenous administration of recombinant MFG‐E8 biphasically and dose‐dependently regulated the cultured VSMCs. At a low concentration, MFG‐E8 upregulated Arp2 expression. By contrast, MFG‐E8 at a high concentration reduced the Arp2 level and significantly attenuated actin assembly. Arp2 upregulation mediated by low‐dose MFG‐E8 was abolished by treating cultured VSMCs with β1 integrin function‐blocking antibody and Rac1 inhibitors. Moreover, treatment of the artery with a high dose of recombinant MFG‐E8 diminished injury‐induced neointimal hyperplasia and reduced VSMC migration.
Conclusions
MFG‐E8 plays a critical role in VSMC migration through dose‐dependent regulation of Arp2‐mediated actin polymerization. These findings suggest that high doses of MFG‐E8 may have therapeutic potential for treating vascular occlusive diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.