IMPORTANCE New therapeutic options for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) are needed. This study evaluated dual checkpoint combination therapy in patients with mPDAC. OBJECTIVE To evaluate the safety and efficacy of the anti-PD-L1 (programmed death-ligand 1) antibody using either durvalumab monotherapy or in combination with the anticytotoxic T-lymphocyte antigen 4 antibody using durvalumab plus tremelimumab therapy in patients with mPDAC. DESIGN, SETTING, AND PARTICIPANTS Part A of this multicenter, 2-part, phase 2 randomized clinical trial was a lead-in safety, open-label study with planned expansion to part B pending an efficacy signal from part A. Between November 26, 2015, and March 23, 2017, 65 patients with mPDAC who had previously received only 1 first-line fluorouracil-based or gemcitabine-based treatment were enrolled at 21 sites in 6 countries. Efficacy analysis included the intent-to-treat population; safety analysis included patients who received at least 1 dose of study treatment and for whom any postdose data were available. INTERVENTIONS Patients received durvalumab (1500 mg every 4 weeks) plus tremelimumab (75 mg every 4 weeks) combination therapy for 4 cycles followed by durvalumab therapy (1500 mg every 4 weeks) or durvalumab monotherapy (1500 mg every 4 weeks) for up to 12 months or until the onset of progressive disease or unacceptable toxic effects. MAIN OUTCOMES AND MEASURES Safety and efficacy were measured by objective response rate, which was used to determine study expansion to part B. The threshold for expansion was an objective response rate of 10% for either treatment arm. RESULTS Among 65 randomized patients, 34 (52%) were men and median age was 61 (95% CI, 37-81) years. Grade 3 or higher treatment-related adverse events occurred in 7 of 32 patients (22%) receiving combination therapy and in 2 of 32 patients (6%) receiving monotherapy; 1 patient randomized to the monotherapy arm did not receive treatment owing to worsened disease. Fatigue, diarrhea, and pruritus were the most common adverse events in both arms. Overall, 4 of 64 patients (6%) discontinued treatment owing to treatment-related adverse events. Objective response rate was 3.1% (95% CI, 0.08-16.22) for patients receiving combination therapy and 0% (95% CI, 0.00-10.58) for patients receiving monotherapy. Low patient numbers limited observation of the associations between treatment response and PD-L1 expression or microsatellite instability status. CONCLUSION AND RELEVANCE Treatment was well tolerated, and the efficacy of durvalumab plus tremelimumab therapy and durvalumab monotherapy reflected a population of patients with mPDAC who had poor prognoses and rapidly progressing disease. Patients were not enrolled in part B because the threshold for efficacy was not met in part A.
Phosphatidylglycerophosphate (PG-P) synthase catalyzes the synthesis of PG-P from CDP-diacylglycerol and sn-glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (CL). In eukaryotic cells, CL is found predominantly in the inner mitochondrial membrane and is generally thought to be an essential component of many mitochondrial functions. We have determined that the PEL1 gene (now renamed PGS1), previously proposed to encode a second phosphatidylserine synthase of yeast (Janitor, M., Jarosch, E., Schweyen, R. J., and Subik, J. (1995) Yeast 13, 1223-1231), in fact encodes a PG-P synthase of Saccharomyces cerevisiae. Overexpression of the PGS1 gene product under the inducible GAL1 promoter resulted in a 14-fold increase in in vitro PG-P synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast did not lead to a loss of viability but did result in a dependence on a fermentable carbon source for growth, a temperature sensitivity for growth, and a petite lethal phenotype. The pgs1 null mutant exhibited no detectable in vitro PG-P synthase activity and no detectable CL or phosphatidylglycerol (PG); significant CL synthase activity was still present. The growth arrest phenotype and lack of PG-P synthase activity of a pgsA null allele of Escherichia coli was corrected by an Nterminal truncated derivative of the yeast PG-P synthase. These results unequivocally demonstrate that the PGS1 gene encodes the major PG-P synthase of yeast and that neither PG nor CL are absolutely essential for cell viability but may be important for normal mitochondrial function.The synthesis of phosphatidylglycerol (PG) 1 and cardiolipin (CL) (1) utilizes CDP-diacylglycerol (CDP-DAG), a central intermediate of phospholipid metabolism in all organisms (see Fig. 1), which is synthesized by an enzyme exhibiting extensive homology over a broad spectrum of species (1). The committed and rate-limiting step in PG/CL biosynthesis in yeast (2, 3) and Escherichia coli (4) is catalyzed by phosphatidylglycerophosphate (PG-P) synthase. In yeast all of the steps after CDP-DAG formation appear to be associated with the mitochondrial inner membrane (3), while CDP-DAG is synthesized by a single gene product localized to both the mitochondria and the endoplasmic reticulum (5); however, trace amounts of PG-P synthase activity have been reported in the cytoplasmic membrane and secretory vesicles destined for this membrane (6).PG-P synthases have been well characterized in several prokaryotic organisms and share significant amino acid homology along with a motif common to phosphatidyltransferases and enzymes that bind CDP-alcohols (7). The genes (pgsA) encoding these synthases have been biochemically verified in E. coli (8 -10), Rhodobacter sphaeroides (11), and Bacillus subtilis (12). No eukaryotic gene encoding PG-P synthase activity has been identified, and the open reading frame derived from the Saccharomyces cerevisiae genome sequence most homologous to bacterial PG-P synthases actually e...
In eukaryotic cells, cardiolipin (CL) synthase catalyzes the final step in the synthesis of CL from phosphatidylglycerol and CDP-diacylglycerol. CL and its synthesis are localized predominantly to the mitochondrial inner membrane, and CL is generally thought to be an essential component of many mitochondrial processes. By using homology searches for genes potentially encoding phospholipid biosynthetic enzymes, we have cloned the gene (CLS1) encoding CL synthase in Saccharomyces cerevisiae. Overexpression of the CLS1 gene under its endogenous promoter or the inducible GAL1 promoter in yeast and expression of CLS1 in baculovirus-infected insect cells resulted in elevated CL synthase activity. Disruption of the CLS1 gene in a haploid yeast strain resulted in the loss of CL synthase activity, no detectable CL, a 5-fold elevation in phosphatidylglycerol levels, and lack of staining of mitochondria by a dye with high affinity for CL. The cls1::TRP1 null mutant grew on both fermentable and non-fermentable carbon sources but more poorly on the latter. The level and activity of cytochrome c oxidase was normal, and a dye whose accumulation is dependent on membrane proton electrochemical potential effectively stained the mitochondria. These results definitively identify the gene encoding the CL synthase of yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.