The global spread of COVID-19 as well as the worsening air pollution throughout the world have brought tremendous attention to the development of materials that can efficiently capture particulate matter. We suggest that the high porosity of electrospun filters composed of nanofibers could provide minimal obstruction to air flow, while their high tortuosity and surface area-to-volume ratio present an excellent platform to capture particulates. In this study, the removal of nanoscale particles via in-house fabricated cellulose nanofilters is significantly enhanced by chemically functionalizing the fibers' surface via the deposition of the bioinspired glue polydopamine (PDA) or the polycation poly(diallyldimethylammonium chloride) (PDADMAC). The effects of filter packing density, layering thickness, and chemistry on their performance, i.e., their filtration efficiency, most penetrating particle size (MPPS), particle fractional penetration percent, and performance in a high relative humidity environment, were investigated. When evaluated in an extremely hazardous environment (PM concentration ∼ 2000 μg m −3 ), the filtration efficiency, pressure drop, and quality factor for the cellulose nanofilters were measured to be >98.0%, <200 Pa, and ∼0.03 Pa −1 , respectively. When we evaluated the performance of a composite hydrophobic/hydrophilic filter in an 80% relative humidity environment, a 99.8% filtration efficiency was achieved. We have demonstrated that the removal of nanoscale particulates can be effectively captured using cellulose-based nanofilters, even in a nonideal high humidity environment. These fundamental investigations into the structure−property-chemistry relationships of inhouse electrospun nanofilters on nanoscale particulate removal hold the potential to help drive the future engineering of nanofilters for air purification applications, which is a timely and extremely important concern.
The metal–organic framework-based membrane adsorber is applied to sorption of dye molecules.
The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.
The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bio-inspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well-known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house manufactured cellulose nanofiber mats (CNFM), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize release. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or total number of captured cells. The ability of the highest performance materials, the liquid-coated HEPA filters were next evaluated on their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a non-enveloped virus which attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of RNA recovered compared to controls. In contrast, significantly more RNA was recovered for SARS-CoV-2, the airborne, enveloped virus which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.