To improve the quality of prosthetic vision, it is desirable to understand how targeted retinal neurons respond to stimulation. Unfortunately, the factors that shape the response of a single neuron to stimulation are not well understood. A dense band of voltage gated sodium channels within the proximal axon of retinal ganglion cells is the site most sensitive to electric stimulation, suggesting that band properties are likely to influence the response to stimulation. Here, we examined how three band properties influence sensitivity using a morphologically realistic ganglion cell model in NEURON. Longer bands were more sensitive to short-duration pulses than shorter bands and increasing the distance between band and soma also increased sensitivity. Simulations using the known limits of band length and location resulted in a sensitivity difference of approximately two. Additional simulations tested how changes to sodium channel conductance within the band influenced threshold and found that the sensitivity difference increased to a factor of nearly three. This is close to the factor of 5 difference measured in physiological studies suggesting that band properties contribute significantly to the sensitivity differences found between different types of retinal neurons.
Carbachol-stimulated insulin release in the RINm5F cell is associated with elevation of the cytosolic Ca2+ concentration ([Ca2+]i) through mobilization of Ca2+ from thapsigargin-sensitive intracellular stores and with the generation of diacylglycerol (DAG). Thus carbachol activates phospholipase C, and this was thought to be the means by which it stimulates insulin secretion. However, when the elevation of [Ca2+]i was blocked by thapsigargin, the effect of carbachol to stimulate insulin release was unchanged. Thus the effect of carbachol to increase [Ca2+]i was dissociated from the stimulation of release. When the role of protein kinase C (PKC) was examined, carbachol-stimulated insulin release was found to be unaffected by phorbol ester-induced downregulation of PKC, using 12-O-tetradecanoylphorbol-13-acetate (TPA), and by the PKC inhibitors staurosporine, bisindolylmaleimide, and 1-O-hexadecyl-2-O-methylglycerol (AMG-C16). These treatments abolished the stimulation of release by TPA. Thus the carbachol activation of PKC appeared also to be dissociated from the stimulation of insulin release. However, when the activation of several different PKC isozymes was studied, an atypical PKC isozyme, zeta, was found to be translocated by carbachol. By Western blotting analysis, carbachol selectively translocated the conventional PKC isozymes alpha and beta (the activation of which is dependent on Ca2+ and DAG) from the cytosol to the membrane. Carbachol also translocated the atypical PKC isozyme zeta, which is insensitive to Ca2+, DAG, and phorbol esters. The PKC inhibitors staurosporine, bisindolylmaleimide, and AMG-C16 blocked the stimulated translocation of PKC-alpha and -beta, but not that of PKC-zeta. Prolonged treatment of the cells with TPA downregulated PKC-alpha and -beta, but not PKC-zeta. Under all these conditions, carbachol-stimulated insulin release was unaffected. However, a pseudosubstrate peptide inhibitor specific for PKC-zeta inhibited the translocation of PKC-zeta and 70% of the carbachol-stimulated insulin secretion. The data indicate that carbachol-stimulated insulin release in RINm5F cells is mediated to a large degree by the activation of the atypical PKC isozyme zeta.
Carbachol can stimulate insulin release in RINm5F cells by a mechanism that does not involve the elevation of cytosolic free Ca2+ concentrations or the activation of conventional protein kinase Cs (Mol Pharmacol 47:863-870, 1995). Thus, a novel signal transduction pathway links the muscarinic activation of the cells to increased insulin secretion. The question arises as to whether the pathway results from a novel receptor, different from the five established muscarinic receptors, or whether a "normal" receptor in the RINm5F cell activates a novel pathway. To distinguish between these two possibilities, the muscarinic receptors in the RINm5F cell were identified. Using polymerase chain reaction, combined with subcloning and DNA sequencing techniques, the cDNAs that encode the established M3 and M4 receptors were identified. The cDNAs for the Ml, M2, and M5 receptors were not found. Pharmacological studies showed a rank order of potency for muscarinic receptor subtype antagonists to inhibit carbachol-induced insulin release (half-maximal inhibitory concentration [pIC50] values given in parentheses): atropine (nonselective, 9.0) > 4-diphenyl-acetoxy-N-methyl piperidine methiodide (M3/M1, 8.6) > para-fluoro-hexahydrosiladiphenidol (M3, 8.1) > hexahydrosiladiphenidol (M3, 8.0) > tropicamide (M4, 6.4) > pirenzepine (M1, 6.1) > methoctramine (M2, 5.9). This antagonist profile suggests that it is the M3 receptor that mediates carbachol-induced insulin release. In this case, the novel signaling involved in the unusual carbachol response would not be due to a novel receptor but to the well-characterized M3 receptor. It appears, therefore, that the novel portion of the signaling pathway lies downstream of the M3 receptor and may consist of products of phosphatidylinositol hydrolysis, other than inositol triphosphate and diacylglycerol, resulting from the activation of phospholipase C. While a contributory role of the M4 receptor cannot be ruled out, there is no evidence in its favor other than its presence in the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.